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ABSTRACT 

Multimaterial flows, i.e. flows involving mixtures of two or more phases, abound 

in engineering and natural systems; it is not a stretch to think of them as commonplace. 

The description of such flows in continuum mechanics and computations of their dynamics 

using discrete forms of the governing equations must contend with the fact that the distinct 

phases comprising the mixture may not be fully resolvable in a finite element/volume 

setting. Therefore, in modeling such systems, even with modern day computers and 

techniques, approximate descriptions of the multi-material system properties are typically 

employed. Examples include homogenization techniques, volume averaging approaches, 

mixture models, etc. all of which seek to treat the multiphase, multi-component material as 

a homogeneous material, with the bulk properties representing some average behavior of 

the materials comprising the mixture. This approach suffices in many engineering 

applications, but in some cases local phenomena may be important. In these latter 

situations, mixture models that gloss over the local properties and interactions between the 

distinct phases comprising the mixture may fail to reproduce observed behavior.  In order 

to bring the local (unresolved/subgrid scale) behavior back into the physical description 

some means of coupling the behavior of the resolved (macro-/homogenized) scale and the 

unresolved (meso- /micro-) scales must be devised.  

 

 This thesis attempts to develop a framework to effect such a coupling of scales by 

“learning” from selected computational experiments at the meso-scale and transmitting the 

“learned” behavior to the macro-scale. The “learning” is performed by means of an 

artificial neural network that is trained using data extracted from the meso-scale direct 



 
 

 

numerical simulations. It is well known that artificial neural networks can perform the role 

of function approximators and can be trained to represent complex behavior in a 

multidimensional parameter space. This pattern recognition ability of artificial neural 

networks is employed to accumulate knowledge of meso-scale behavior in the present 

work. 

In particular, this thesis describes the use of an Artificial Neural Network (hereafter 

abbreviated to ANN), to learn and predict the transient forces on a particle in a 

compressible flow field to produce an accurate model for shocked particulate-laden flows. 

In the multi-scale sense, the ANN learns meso-scale information of particle-fluid 

interactions requiring expensive computations; once the behavior is learnt, the ANN can 

be interrogated to obtain information by a macro-scale model to accurately produce results 

without continuing to perform expensive computations in direct numerical simulations. 

Particle data is collected from a compressible Eulerian-Lagrangian solver and provided to 

the ANN for a range of control parameters, such as Mach number, particle radii, particle-

fluid density ratio, position, and volume fraction. Beginning with a simple single stationary 

particle case and progressing to moving particle laden clouds, the ANN is able to evolve 

and reproduce correlations between the control parameters and particle dynamics. The 

trained ANN is then used in computing the macro-scale flow behavior in a model of 

shocked dusty gas advection. The model predicts particle motion and other macro-scale 

phenomena in agreement with experimental observations and with a very large reduction 

in time and computational expense. 
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CHAPTER I:    

INTRODUCTION 

Background 

In phenomena involving high-speed flows in multiphase materials, such as in dust 

explosions, condensation shocks, explosive debris transport, detonation in heterogenous 

media and a host of other phenomena, there are complex interactions that occur between 

propagating shocks and rarefaction waves, including carrier fluid-particle interactions and 

particle-particle interactions.(1)(2) Such flows are very difficult to visualize (due to the wide 

range of length scales and short time scales involved) and experimental measurements are 

difficult and expensive to obtain.(3) Therefore, to understand what happens in such violent 

environments requires the development of accurate computational models.   

 

Computational speeds in fluid calculation have increased tremendously over the 

past few decades, along with advances in modeling and calculating complex multi-phase 

flows. (4) However, accurate modeling of complex multimaterial flows still presents stiff 

challenges due to at least the following reasons: 

1. The full description of compressible multimaterial flows requires models to 

embed the interactions between the fluid and particles, and between particles 

themselves (5). Such models are empirical in nature. As mentioned above 

experimental investigation of shocked particle laden flow are rather challenging 

and the information derived from such experiment cover limited parameter 

ranges.  
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2. Even where experimental data for such flows are available, the manner in which 

the behavior of a mixture in described in a continuum setting can lead to loss of 

important physics.(6) 

3. Resolution of transient shocked flows in itself demands rather heavy 

computational resources. Since the length scales of the discrete particles in a 

multi-material system and the time scales of response of the particulate phases 

may be vastly different from that of the bulk flow, resolving the dynamics of 

the individual components of the mixture is impossible. Therefore some overall 

(averaged or homogenized) behavior of the multi-material mixture needs to be 

modeled and computed.(7) While such averaged material representations may 

be sufficient for many engineering applications, there are some physical 

problems where the local behavior of the material, i.e. the detailed interactions 

between the (unresolved) individual phases in the mixture can become 

important and can influence the observed global dynamics. Examples of such 

sub-grid phenomena that can manifest at large scales and completely dominate 

the overall material behavior include: a) material failure/fracture/spall in ductile 

materials, where cracks can develop at grain boundaries and progress along 

specific defects in the material leading to the change of the overall (i.e. large 

scale) material response;(8) b) deflagration to detonation transition in a 

heterogeneous explosive, where detonation initiation is thought to occur at 

voids in the material or due to inter-granular interactions upon passage of a 

compression wave in the material;(9) or c) particle-particle interactions and 
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particle-carrier medium interactions in dusty gas flow leading to changes in the 

observed macroscopic behavior.(10) 

 

An example in the last category above is shown in Figure 1 and Figure 2.(1)  The 

experiments from which the figure is obtained were performed by Boiko et al.(1) Here a 

cloud of particles (polystyrene, average particle diameter 𝑑𝑝 of 80 microns) is hit by a 

shock wave (traveling from left to right).  The overall behavior of the particles subjected 

to the shock is very interesting; in particular, for the high particle volume fraction case the 

particle distribution assumes a triangular form as shown in Figure 2. The reason for 

formation of the triangular structure in the case of the heavily loaded mixture case (while 

the low particle loading does not produce a distinct structure) must hinge upon the 

interactions between the more densely packed particles. In order to reproduce the observed 

macro-scale distribution of the particles, the effects of the micro-scale interactions between 

the particles must be placed in a macro-scale description of the shocked particle-laden 

fluid.  

 

The particle motions in a macro-scale particle-fluid mixture model traditionally 

follow from Newton’s laws applied to the individual particles and  reflect the force 

transmitted to the individual particles by the impinging shock.(11) This force will depend 

on the shock strength (Mach number, M), the density of the particle relative to the fluid 

(
𝜌𝑝

𝜌𝑓
), the volume fraction of the solid (𝜑𝑝) and the particle size (𝑑𝑝). The key question is: 

how does one determine the dependency of the force on a given particle on each of these 

parameters?  
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The idea pursued in this thesis is that one can perform direct numerical simulations 

on small clusters of particles subject to a range of conditions in the parameter space defined 

above (consisting of M, 
𝜌𝑝

𝜌𝑓
, 𝜑𝑝, 𝑑𝑝) to learn about the behavior of “representative 

particles”. For example, one can compute the drag versus time curves for particles based 

on such simulations as a function of the above four parameters.(12) Then one can 

encapsulate the dependence of the drag on time (t) as well as on the parameters in the form: 

𝐷(𝑡) = 𝑓(𝑀,
𝜌𝑝

𝜌𝑓
, 𝜑𝑝, 𝑑𝑝, 𝑡), which is conventionally the route taken in establishing 

experimental correlations or drag laws.  However, since the drag law to be derived is 

dependent in a rather complex way on multiple parameters, the resulting manifold in the 

parameter space that describes the drag law can be quite difficult to obtain.  In this regard, 

the idea of employing a device to “learn” this law from a series of computational 

experiments becomes attractive. After all, organic systems, exemplified by human beings, 

learn rather complex patterns and assimilate them with ease; this is accomplished by 

utilizing the rather complex neural architectures residing in the human brain. The general 

concept of utilizing neural architectures to learn behaviors that can be transmitted to other 

systems opens the possibility of using ANNs for multiscale modeling.  In the following we 

briefly review the concept of multiscale modeling (MSM) and various approaches used in 

such models. The current approach draws some central ideas from such methods but 

follows the route of ANN-based learning, which has been applied only in a few instances 

of multiscale modeling thus far. (13) 
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Figure 1: Experimental Image,  

(Low 𝜑𝑝 - Boiko et al)(1) 

Figure 2: Experimental Image,  

(High 𝜑𝑝 - Boiko et al)(1) 
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CHAPTER II:    

MULTISCALE MODELING APPROACHES 

As stated in Chapter I, the specific goal of this project is to develop a method 

utilizing an ANN to efficiently model shocked particle-laden flows. The configuration of 

interest is similar to Figure 1 and Figure 2, taken from Boiko et al., (1) where a cloud of 

particles is placed in a domain and a shock wake is allowed to pass through the cloud. To 

simulate the behavior of the particle-laden flows, in particular to capture the particle 

distribution that is observed in the experiments, it is necessary to adequately represent 

particle-shock and particle-particle interactions in a macro-scale model.(14) Thus, a 

connection between micro-scale dynamics and macro-scale dynamics must be established. 

In the past, empirical or semi-empirical correlations were obtained to connect the micro-

scale dynamics to macro-scale parameters and the macro-scale model then employed these 

correlations;(15)(16) examples include drag laws for the particles, heat transfer correlations 

(capturing effects of unresolved features such as boundary layers), turbulent viscosity 

coefficients etc. Developing such correlations requires painstaking experimentation to 

cover parameter spaces; these experiments can be difficult and expensive, and sometimes, 

for phenomena occurring at small spatial or temporal time scales, even impossible to 

perform.(17) In recent times, the idea of multiscale modeling has emerged, spurred by the 

availability of large-scale computing platforms and improved numerical techniques.(18) In 

multiscale modeling, detailed computations are performed separately at the microscale and 

the information obtained from such simulations is “somehow” transferred to the macro-

scale and conversely.(19) The key operating word here is “somehow”; the methods for 
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affecting such interscale transfer are still being developed.  Some candidate techniques are 

mentioned below. 

 

Importance of and challenges to multiscale modeling and computation 

All phenomena in natural and engineered systems are intrinsically multi-scale. 

However, in describing these phenomena at the level of detail relevant to engineered 

systems, continuum scale dynamic laws are employed.(20) Assumptions are made regarding 

the effects of small spatial and short time scales (hereafter collectively called “fine” scales) 

on the observed large-scale (hereafter called “coarse” scale) dynamics. Familiar examples 

are the encapsulation of molecular interaction effects through thermodynamic equilibrium 

assumptions into macroscopic material properties, such as viscosity, thermal conductivity, 

surface tension etc. In traditional continuum mechanics, empirical models (typically called 

“closure” models) such as Newtonian fluids, Coulombic friction, Linear or nonlinear 

elastic material, etc. are common and highly successful in describing and predicting the 

coarse-scale behavior of the material.(21) However, there exist a substantial number of 

phenomena where, semi-empirical “closure” models are quite inaccurate or even entirely 

incorrect in their predictions.(21) Typically, in such problems, the fine scales have a 

disproportionate impact on the coarse scale flows, and therefore demand to be treated in 

sufficient detail. A classical example of this situation is the effect of boundary layers in 

flows with small viscosity. Prior to the advent of boundary layer theory classical inviscid 

hydrodynamic theory produced totally incorrect predictions of flows around solid 

obstacles, as exemplified by the d’Alembert paradox (22).  These difficulties were removed 

and the theory of flight was placed on solid ground when the boundary layer concept 
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removed the vortex sheet singularity at a solid surface by developing a detailed model of 

the small scale flow behavior within the boundary layer(23).  

 

Fortunately, in the case of viscous flows, two distinct scales (the body length scale 

and the viscous length scale) are present, and it is possible to treat these scales separately 

and to match solutions between the two scales.(24) Examples of other problems (in many 

cases with singularities resting at the fine scale) where such scale separation exists include 

crack propagation phenomena in solids, microstructure growth in solidified materials, 

three-phase contact line motion in multiphase flow, instabilities leading to formation of 

fine scale structures, such as droplets in spray atomization, flows through porous media 

etc.(16)(25) (26) On the other end of the spectrum are multiscale phenomena where a separation 

of scales is not possible and a full description of the mechanics demands treatment of the 

phenomena at each scale and the interaction between scales. The archetype is fluid 

turbulence (27). Since the contribution of a continuum of scales is to be accounted for (i.e. 

turbulent spectra are intrinsically broad band), the modeling of fluid turbulence remains 

intractable for the foreseeable future.(28) Modelers will continue to rely on “closure” models 

for the description of fluid turbulence, at least for some range of spatio-temporal scales(29) 

 

From the standpoint of tractability with regard to multi-scale modeling, it is 

becoming increasingly feasible to tackle phenomena where a distinct separation of scales 

exists and where the physical characteristics and transport at these distinct scales can be 

adequately described and computed.(30) This has become possible, in part due to the rapid 

development of computer simulation techniques and hardware, particularly associated with 
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large scale computing on multiprocessor systems.  Examples of systems that have seen 

robust activity in multiscale modeling include flows in porous media(31)(32) , multiphase 

flows (33)(34)(30)(35), and flows in biological systems (36)(37).  In these cases, the development 

of computational techniques and hardware has been assisted by the tandem development 

of advanced visualization techniques that have enabled quantitative characterization of the 

geometry of the smaller scales. Since the fine scales can be visualized and efficient methods 

to compute flows at the fine scale are available, direct numerical simulations can be 

performed at these scales.   The challenge, then, is to extract information from the 

simulations at the fine scales (called “restriction” (38)) that are important to correctly 

describe the effects of the fine scale on the coarse scale dynamics. Various approaches have 

been developed in the literature for performing the restriction operation as will be described 

in the review of methods below. The equations at the coarse scale are computed based on 

the information provided by the fine scales. The sequence of computation then returns to 

the small scales which are then evolved again, with initial and boundary conditions 

supplied from the large scale (through a procedure called “lifting”(38)). Multi-scale 

computation of this type can proceed in a “concurrent” (18) manner (where fine and coarse 

scales are computed in an alternating sequence with full coupling) or in a “hierarchical” 

manner (where fine scale computations are performed separately with varying parameters 

and the results are encapsulated in a model for later use in a stand-alone coarse scale 

computation).  While hierarchical modeling of multi-scale phenomena has great value and 

is perhaps the only practical recourse for many physical phenomena, concurrent 

computation has gained increasing attention, particularly with the wide availability of 

multiprocessor computing environments.  This proposal seeks to proceed along the path of 
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concurrent multiscale modeling using novel approaches for computation of the governing 

equations as well as for communicating between the different scales. 

Approaches to multiscale modeling 

Modeling codes in computational fluid dynamics, or CFD, are limited in speed 

mainly by the number of cells used in calculations.(39) To maintain accuracy, cell sizes must 

be kept small. However the need for CFD models with increasing domain sizes is on the 

rise. With the small grid sizes and increasing overall domain sizes , cell numbers approach 

hundreds of millions of grid cells; far more than a single computer processor can handle. 

Thus a new breed of CFD models has risen up with the idea of multiscale 

modeling.(13)(17)(40) A significant issue   in multiscale modeling is the passage of information 

from the smaller meso-scales to the larger macro-scales. This process of multi-scale 

information exchange has given rise to different methods . One of the most promising 

methods is the patch dynamics method; where only “patches” of fine scale calculations are 

made then information is passed to the larger scale; the small scale to large scale passage 

is called lifting.(19) The main issue of lifting is deciding what to pass and how to use the 

information. This problem becomes even more important to multiscale modeling when 

multiple phases, such as rigid particles immersed in a fluid, are introduced.(1)(41)  

 

1. Homogenization/ Upscaling 

The traditional approach to dealing with multiscale phenomena has taken the route 

that falls under the umbrella of “homogenization/mixture formulations/upscaling” (42)(43). 

In such approaches the fine scale details are transmitted to the coarse scale (at which the 

simulations are conducted) via empirical/semi-empirical/analytical correlations reflecting 
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effective mixture properties (conductivities, diffusivities, equations of state, drag, 

interphase flux terms etc.).(44) Homogenization-based approaches require specific 

properties of the small scale behavior, such as scale separation and periodicity.(45) While 

this treatment suffices for some problems, it suffers from a lack of generality. In addition, 

the homogenized model (typically embedded into the coarse scale via transfer functions or 

interphase interaction terms as sources in the governing equations) can often be problem 

specific or valid over restricted parameter spaces, restricting the range of applicability of 

the homogenized model. In any case, with this approach, typical of hierarchical multiscale 

models, the fine scale effects are not fully coupled to the coarse scale dynamics, leading 

primarily to a one-way coupled model, i.e. the fine scales affect the coarse scale but not 

vice-versa. Such “coarse-graining” of fine-scale models and the coupling of coarse-grained 

models to fine-scale models at specific boundaries separating the two sub-domains is quite 

popular in multiscale models coupling molecular and continuum dynamics 

computations(46)(47)(48)  and in biomedical applications coupling lower-dimensional models 

to more detailed higher-dimensional models(36)(37)(26).  In recent years, attention has turned 

to effecting two-way coupling between the fine and coarse scales, within and without the 

homogenization paradigm.(49) The methods adumbrated below provide a route to the type 

of modeling that is on the horizon, namely full treatment of physics and computation at 

each of the relevant scales that play important roles in the overall dynamics of the system.  

In each case the way in which the fine-scale dynamics is coupled to the coarse-scale is 

italicized for emphasis. 
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2. Embedding fine-scale features into global discretization 

In the context of modeling flow through porous media, Hou and coworkers(31)(15)(50) 

and others (51) have developed a multiscale finite element procedure where the (fixed) fine 

scale variations are embedded into the coarse scale calculations by incorporating the fine-

scale variations into the finite element basis functions.  Thus, the fine scale features are 

implicitly included in the solution of the coarse scale equations through the global stiffness 

matrix.  In order to include global effects (such as channel formation) in addition to fine-

scale heterogeneity, into the porous medium model an adaptive multiscale model has also 

been proposed (51). 

 

3. Wavelet-based multi-resolution analysis 

Another approach to multiscale modeling in the porous medium literature is that 

performed Sahimi and coworkers (52)(44)(53).  Their approach consists of using the intrinsic 

multiresolution feature of wavelet transforms to direct computational resources to those 

regions that require fine-scale resolution, while retaining coarse-scale representations 

where sufficient. This allows for efficient computation and transient adaptivity so that fine-

scale features are captured to desired fidelity while interacting fully with coarse-scale 

computation.   The natural multiscale basis functions embedded in wavelet representations 

and the data compression enabled in the wavelet domain is also exploited in discretizations 

with wavelet basis functions (54).   
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4. Equation-free modeling 

A novel “equation-free” multiscale approach has been developed by Kevrekedis 

and coworkers (46)(55).  The method relies on “short bursts” of fine scale direct numerical 

simulations (typically using molecular dynamics) to determine the time evolution of coarse-

scale quantities.   Since the short burst “numerical experiments” are used to evolve the 

coarse-scale quantities directly, no transfer functions or upscaling of the fine-scale 

information is necessary and therefore the fine- to coarse-scale communication becomes 

equation-free. The coarse field is then time-stepped with a large (coarse) time step and the 

coarse field is “lifted” (i.e. interpolated on to the fine mesh) to provide the initial and 

boundary conditions for the fine-scale computation.  The efficiency of the multi-scale 

methodology adopted in the equation-free framework comes from three sources: 1) The 

coarse-scale time step is much larger than the fine-scale time step (“gap-tooth”-ing (56) ), 

2) Fine-scale calculations are performed for short bursts, and 3) The fine-scale calculations 

are performed in discrete and non-contiguous spatial locations with grid sizes much smaller 

than the coarse grid size. This last strategy is called “patch dynamics” (19) (57)(58) (see Figure 

6 for illustration of the concept of patches). The spatially separated patches receive initial 

and boundary conditions through “restriction” from the coarse scale.  Engquist and 

coworkers (38) have extended this approach to other applications in the form of a 

“heterogeneous multiscale method”.   In terms of generality the heterogeneous multiscale 

method holds promise as an approach that can be employed for solving problems involving 

transient phenomena such as interfaces embedded in the coarse as well as fine-scale fields.  
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5. Heterogeneous multiscale modeling 

Based on the ideas set forth in the equation-free multiscale modeling strategy of 

Kevrekedis and coworkers, Engquist and others(38)(48)(59) propose a general and efficient 

methodology called Heterogeneous Multiscale Method (HMM). In this method, the basic  

ideas of using patch dynamics, gap-toothing, lifting and restriction are employed to solve 

continuum equations at the coarse-scale by extracting fine-scale effects from “short 

burst”, spatially sampled solutions at the fine scale.  Note that the whole notion of fine-

scale computations to inform coarse-scale dynamics would be untenable if the efficiencies 

arising from temporal sampling (gap-toothing) as well as spatial sampling (patch 

dynamics) were not exploited. That is, the fine-scale solution is only obtained at a few 

spatial locations and for a short period of time. Example problems where HMM has been 

used that has direct bearing on the problem of interest to this proposal are the following: 

 

1. Flame front propagation (59): In this problem the HMM approach is used to solve 

the coarse scale equations by advancing the micro-scale (which cannot be resolved 

by the coarse grid) combustion front using explicit interface tracking and direct 

numerical simulation of the front dynamics at the fine-scale.  This is a Type A 

multiscale problem(38)(17), where the microscale solution provides boundary 

conditions for the macro-scale problem, i.e. the  microscale effects are strong in a 

localized region, in the present case at the singularity represented by the flame front. 

2. Crack propagation (60): At the coarse scale the linear elasticity equations are solved 

along with an update of the crack tip position, while at the fine scale the molecular 

dynamics solution in the vicinity of the crack tip is employed. This removes the 
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singularity corresponding to the crack tip from the macro-scale (coarse) field.  This 

is a Type A problem as well; fine scale effects are disproportionately critical in the 

vicinity of the crack tip. 

3. Dynamics of complex fluids (48):  At the coarse scales the standard Navier-stokes 

equations are solved; molecular dynamics is used at the fine scale to inform the 

coarse-scale constitutive laws where necessary. This includes regions that exhibit 

singularities at the coarse-scale, such as at moving contact lines, stress singularities 

at sharp corners etc. These represent Type A multiscale problems. In addition,  the 

effect of complex molecular structure of fluids are included by considering 

macromolecules, modeled in the fine scale as dumbbell shaped particles with 

appropriate potentials in the MD calculations.  The multiscale coupling then is used 

to inject the fluid stresses into the coarse-scale equations.  This is a Type B 

multiscale problem (17), where the micro-scale problem provides constitutive 

relationships for the macro-scale field. 

 

The problem of interest to this project is a Type B problem in the sense that we seek 

to obtain coarse-scale information on the constitutive properties and behavior of materials 

with subgrid texture and dynamics. The primary difference between the application of 

HMM to the Type B problem (# 3 above) and the problem to be addressed in the present 

proposal is that while in (48) the fine-scale model is an MD model, in the present case the 

fine-scale model is a continuum model. In this sense the situation of interest to this work 

is akin to the subgrid modeling of flows in porous media (15).     
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Application of Artificial Neural Networks to multiscale modeling 

There have been significant advancements in the area of digital cognitive 

enhancements and artificial intelligence.(61) One particular application of artificial 

intelligence which closely parallels what we are seeking in this thesis is that of pattern 

recognition or knowledge assimilation for use in fluid dynamics.(62)(63) Essentially, we want 

to gather knowledge regarding how a particle in a cluster reacts to a shock that hits the 

cluster. We want to “learn” this behavior from computational experiments and then 

transmit this behavior to another simulation performed at a coarser scale. With this purpose 

in mind, a possible candidate approach for knowledge acquisition is an artificial neural 

network, or ANN, which is capable of learning a myriad of different behaviors. ANNs are 

capable of learning the complicated behavior of several variables by modifying a collection 

of weights attached to its “neurons”.(64) In effect, the learning process is designed to mimic 

small parts of the human brain where learning takes place by modulating the strength of 

synaptic connections between individual neurons. In the human brain this process is 

incredibly fast, as the human brain is capable of processing the computational equivalent 

of over 10 petaflops.(65) The assimilation and recovery of knowledge from ANNs is not 

quite as spectacular.  But the essential idea remains the same.  The tedium in ANN 

applications (unlike in the human brain) comes from the need to train the ANN by 

providing it with sufficient samples of training data, so that the ANN can adequately 

construct (in its “mind’s eye”, so to speak) the hyper-surface (due to the multidimensional 

parameter space) representing the behavior of the system. The number of samples required 

to train the ANN depends on the complexity of the behavior to be represented and also 

depends on the complexity of the ANN itself.(66) Therefore, while the ANN provides 
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learning and knowledge assimilation ability akin to a microcosm of the human brain, its 

use must be accompanied with sufficient care from the user in order to properly train the 

ANN in the desired parameter space.  Once the ANN is trained however, knowledge 

recovery is rather rapid, and can be effected by interrogating the ANN. Utilizing the ability 

of the ANN to capture and represent complex behavior in a multidimensional parameter 

space in a CFD code would greatly improve the speed of calculations while still 

maintaining accuracy. The jump in speed would be obtained by the ANN’s ability not only 

to learn and process information, but also because of its prediction capabilities.   The work 

in this thesis will seek to demonstrate these concepts by applying it to solve the problem 

of shock-impacted particle laden flows as pictured in Figure 1 and Figure 2 of Chapter 1.(1) 

 

Macro-scale modeling and interscale coupling 

At the macro-scale, information about what happens at the meso-scale is still 

needed. The largest problem in macro-scale modeling is to obtain meso-scale information 

in an efficient manner. The main idea utilized in our modeling is patch dynamics.(19)
 In 

patch dynamics, the idea is to only run direct numerical simulations (DNS) for fine scale 

or meso-scale models selected from the coarse scale or macro-scale model. A diagram of 

this concept is displayed in Figure 3. 
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Figure 3: Patch Dynamics Concept 

 

At the meso-scale, mixtures are considered to be suspended particles which require 

DNS, while at the macro-scale mixture may be assumed as homogeneous with 

characteristics obtained from the meso-scale. This way the effects of the meso-scale may 

be accounted for and the flow characteristics lifted from the smaller scale will be utilized 

without high computational expenses. In the case of flow through a porous media for 

instance, a detailed calculation at the meso-scale can provide the flow impedance of a small 

patch (i.e. RVE – representative volume element).(67) For shock-impacted particle laden 

flows the concern at the macro-scale is to predict the particle trajectory. In our case, the 

macro-scale modeling is only concerned with the evolution of particle motion. The 

particles at the macro-scale are advected in Lagrangian fashion and are treated as point 

particles. Provided with a particle’s mass, initial position and the force experienced by the 

particle, a Lagrangian model to track particle trajectory can be obtained. The meso-scale 

simulations then are charged with providing the force on the particle as a function of several 
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control parameters, as mentioned previously. Using the concept of ANN based learning, 

the way in which meso-scale direct numerical simulations can be used to develop 

quantitative information on the forces on the particle, will be described in the following 

chapters. 
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CHAPTER III:    

METHODOLOGY 

The basic methodology behind behavior learning for shock-impacted particle laden 

flows is to develop some type of learning algorithm; in this case an ANN. Then it is shown 

that the ANN can properly learn from selected data sets (called “training sets”), and predict 

values for points in the parameter space (called the “testing set”) that were not provided in 

the training set. Note that ANNs perform well when used for interpolation, but poorly for 

extrapolation. Therefore the testing set typically must lie within the convex hull of the 

training set. In this chapter we briefly introduce the main principles of ANNs and the 

process of training and testing the ANN. 

Artificial Neural Networks 

ANNs are composed of a myriad of simple elements called neurons. The neuron by 

itself is a very simple device. In both a biological neuron and in an artificial neural network, 

each neuron has inputs coming into it; each neuron performs some process with the inputs, 

and then sends an output to other neurons. A single neuron is responsible for only one 

function and a representation of an artificial neuron can be seen in Figure 4. 
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Figure 4: Artificial Neuron 

 

The output for the single neuron illustrated above is described in by, 

 𝑂𝑛 =  𝜑(𝑏𝑘 + ∑ 𝑤𝑘𝑖 ∗ 𝑥𝑖
𝑚
𝑖=1 )

 

Equation 1 

where On is the output, φ is the activation function, bk is the threshold bias, wk are the 

synaptic weights, xi are the inputs from the previous layer of neurons, and i is the number 

of inputs. Every neuron has many connections going to and from other neurons. The 

information passed on to each neuron may have a very small or large effect on the final 

output. A threshold limit is used via a bias value in artificial neural networks to simulate 

the formation and degradation of inter-neuron connections as in the biological system. 

Large arrays of these neurons supply the ability to map out regions of parameter space 

defined by the input parameters. Each neuron is capable of editing weights supplied to it 

based upon the accuracy of the entire network. This enables the neural network to learn the 

behavior of data provided.  

 There are many different weighting schemes and update procedures. For the one 

utilized here, a complete interlayer network is used.(66) This connects each neuron of one 

layer to each neuron of the next layer. Every neuron in the network uses the same basis 
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function to calculate its output. For the artificial neural network used in this work, the basis 

function is a sigmoid function. A sigmoid function is an S shaped curve. It can be a smooth 

logarithmic based curve or piecewise threshold type, as shown in Figure 5.  

 

 

Figure 5: ANN Activation Functions 

 

The activation function selected for our neural network is the function tanh(x). It is 

a fairly simple function whose derivative is always positive, making it a popular choice. 

Several ANNs use other basis functions, including simple step functions, periodic basis 

function such as sine and cosine, radial basis functions(68) such as Gaussian distributions, 

and even wavelets; the idea of using wavelets as a basis function (69) and to assist in learning 

was experimented as a tangent topic. A simple diagram of how the summation property to 

formulate a new hyper-surface by an ANN is shown in Figure 6. In this example, a network 

of two linear inputs, a bias threshold, four hidden layer neurons and an output neuron exists. 

This ANN is feed forward(68) because the direction of information travel is only forward. 

Using the inputs from the previous layer, each of the neurons in the hidden layer is 

formulating a simple decision scheme. For one neuron, the low values of the first input are 

useless and the high values are important while the second input is disregarded by not 
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having a value above the bias threshold. For that hidden neuron, its own hyper plane would 

appear with one low end and one high end with a gentle sigmoid slope separating the two 

regions. This hyper plane developed will never be seen by the user and thus the data and 

the neuron interacting with it is “hidden”. The other three neurons behave in the same way 

treating one region as being more or less important as well as one input. However, when 

the four neurons are all summed together by the final output neuron, they create a hyper 

plane that shows a shared region of importance. A simple application of this network could 

be the amount or red and blue as inputs of a color mix and the final area would be purple. 

A more complicated example as Ahmadi et al. performed, include inputs of porosity and 

water saturation to predict permeability of porous media.(70) 

 

Figure 6: ANN Hyper-surface Development 
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Topography 

The neural network used is a single hidden layer, feed-forward, back-propagation 

network. It possesses one hidden layer of neurons set between the input layer and output 

layer. The ANN is capable of expanding the number of hidden neurons based upon the 

complexity of the function the neural network is fitting. The input layer includes one bias 

neuron to facilitate different levels of activation for each hidden neuron. All of the input 

data was fed forward through the network in one direction without any neurons competing 

against each other; this is why the ANN is called a feed forward network. The last layer 

consists of outputs where a final prediction can be used to find an error in the prediction 

and adapt the weights to the previous layers allowing the ANN to learn. The basic network 

topography is show in Figure 7. 

 

Figure 7: ANN Topography 

Learning and Prediction 

 Once the ANN has been developed, it must go through two important phases before 

it will be capable of producing useful predictions. The first phase is the training phase 
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where a set of data is provided and the ANN learns from the data. The algorithm used to 

learn and edit the weights for each neuron is called a back-propagation algorithm. Every 

neuron in the network contains the same basis function for processing data. For most cases, 

there is only one output neuron that sums all its inputs to arrive at a final prediction. A 

back-propagation algorithm(71) takes the predicted values and compares it to the expected 

values (i.e. to the target output for the given inputs in the training set). Depending on the 

error between the two, the weights for each neuron is edited.(68) The testing of the neural 

network is performed by making a random selection from the data set (until all the data are 

run through) and each data point is tested and used to train the neural network once per 

cycle. When the ANN is in training, it should be learning from every point in a data set 

otherwise learning will be biased. Every iteration step for an ANN consists of cycling 

through the total number of data points in a data set. The error produced on every iteration 

step can be plotted to show a convergence curve on how the ANN is being trained. One 

such convergence curve for the training of ANN is shown in Figure 8. Note that as the 

iterations increase the learning of the ANN saturates and convergence is declared at a pre-

specified error tolerance or maximum iteration count. 
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Figure 8: ANN Convergence 

 

When the training phase is complete, an artificial neural network can be tested by querying 

with a testing set of input data. The resulting output from the ANN is compared against the 

desired output corresponding to the input parameters for that testing set. The ANN is 

believed to have successfully learned if the error produced for the testing set is below a 

desired tolerance. Querying an ANN at multiple points inside a domain allows us to obtain 

a final plot of what the ANN predicts.  The performance of the ANN as a function 

approximation device is illustrated with some examples below.  

Examples of ANN learning process 

1. Logic gates 

To illustrate the basic ideas of training and testing of an ANN, some simple 

examples of function learning are presented in the following. In the first example, 

the ANN is tested on logic gates by feeding in the inputs and target data. The ANN 
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then is trained and tested for accuracy. To train the ANN the input data is set as the 

value of the ordinate and the target output is the corresponding output value. Once 

the ANN has been trained, it is tested, i.e. the ANN is queried for values of the 

ordinate (as input data) of which, for most applications, the ANN was not trained. 

The resulting output of the ANN is the predicted data. In the case of training with 

logic gates, the ANN had 10 hidden neurons and was trained through 500 iterations. 

The inputs and output were Boolean variables while the ANN was allowed to use 

any real value; this allowed the ANN to use the sigmoid activation function and 

enables us to show a curved convergence path (as opposed to piecewise). The 

convergence for each logic gate is displayed in Figure 9. For the cases of AND, 

OR, and NOR, the areas of delimitation were linearly separable. In a 2 by 2 array 

of Boolean variables, the area of positive values for linearly separable region can 

be closed off with one line. This occurs for any function with a derivative with 

constant sign. For the XOR logic gate, the inputs are no longer linearly separable 

and therefore local minima or local maxima may occur. This requires a network of 

logic gates to define, and for an ANN the convergence curve is slow at first before 

it discovers this fact. This ability to handle apt to several regions of maxima and 

minima is what sets an ANN apart from an interpolation scheme. 
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Figure 9: ANN convergence for logic gates 

 

Table 1: Logic gates 

AND 1 (true) 0 (false)  NOR 1 (true) 0 (false) 

1 (true) 1 (true) 0 (false)  1 (true) 0 (false) 0 (false) 

0 (false) 0 (false) 0 (false)  0 (false) 0 (false) 1 (true) 

       

OR 1 0 (false)  XNOR 1 (true) 0 (false) 

1 (true) 1 (true) 1 (true)  1 (true) 0 (false) 1 (true) 

0 (false) 1 (true) 0 (false)  0 (false) 1 (true) 0 (false) 

 

2. The single-variable sine function 

In the next example, the ANN was provided discrete data corresponding to the 

functional form of a sine wave, shown in Figure 10.  This single-variable function 

introduces the idea of multiple values for data input and correlation to the output. 
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The ANN had 20 hidden neurons and was trained for 1000 iterations. The 

comparison for the training set data (red dashed line) and final prediction (blue solid 

line) can be seen in Figure 10.  As seen from the figure, the ANN predicts the sine 

wave in good agreement with the actual sine function.  It is important to note that 

the only difficulty that the ANN exhibits is at the maxima and minima of the curve 

where the predictions are not as accurate. The accuracy of the predictions can be 

improved by employing a greater number of neurons or using more sophisticated 

training methods. (72) 

 

Figure 10: ANN Sine Wave Comparison 

 

3. Multi-variable case (“Peaks”) 

Next, we examine the performance of the ANN for a multi-variable function; a two-

dimensional input space is considered, and the predicted manifold is then a surface. 

For multiple inputs the ANN is provided with each input in the form of an array 

and the prediction is plotted on a hyper-surface. The test case here is a MatLab 

0 2 4 6 8 10 12

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Red = Sine Wave, Blue = Neural Network



30 
 

 

standard test called “peaks”. This test case presents a fairly complex manifold to be 

learnt by the ANN, with multiple maxima and minima in the parameter space and 

fairly steep gradients. To insure accuracy the ANN learning was iterated 10000 

times. The error of the ANN decreased dramatically in the beginning and then 

slowed down. There were small points in learning where the ANN had slight 

increases in error. These small jumps allowed for the learning of data regions that 

are not linearly separable. The 2-D surface known in MatLab as “peaks” is shown 

in Figure 11 with convergence - (a), ANN prediction - (b), training input – (c), and 

actual value (d). The powerful feature of the ANN is that increase in dimensionality 

of the parameter space can be carried out indefinitely (i.e. the hyperspace to be 

constructed can be of arbitrary dimensions), assuming the ANN is capable of 

adapting fast enough to what it needs to learn. Furthermore, once the ANN is 

trained for all available training data sets, if further data sets become available the 

ANN can be further trained by introducing these additional training data; therefore, 

refinements of the prediction capability of the ANN in selected areas of the 

parameter space can be carried out as necessary. These features lend versatility to 

the ANN and make it an attractive function approximator in comparison to standard 

regression techniques.  
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Figure 11: ANN learning of "Peaks" 

 

4. Learning a drag law 

When a planar shock wave hits a stationary spherical particle and passes over it, 

the drag force on the particle (i.e. force exerted on the particle) changes throughout 

shock passage. Once such drag versus time curve obtained by Tanno (73) in an 

experimental (shock tube) setup is displayed in Figure 12. 
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Figure 12: Transient Drag Curve(73) 

 

5. Empirical drag laws 

Empirical drag laws do not provide the transient drag experienced by the particle 

as the shock passes over it. Instead, some measure of steady drag is available that 

omits the details of the shock passage. With trained ANNs, however, one can retain 

the information on the drag versus time for a wide range of parameter space. Thus, 

information obtained from experiments or computations need not be discarded; it 

can be learned and retained as “knowledge” by the ANN.  This does not imply that 

a large data set is stored. Once the ANN is trained the information on the drag 

versus time behavior is stored in the weights attached to the individual neurons in 

the ANN; the individual data sets used for training can then be discarded.  

When attempting to accurately track the position of a particle, the forces, 

acceleration, and velocity changes over time. Almost no previous models of shock-

impacted particle laden flows contain explicit transient drag force across a particle. Drag 

force laws with anything other than Reynolds Number as the dependent variable are few 
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and far between. The ANN-based learning technique offers the possibility of retaining this 

information based on detailed experiments or numerical simulation around individual 

particles. Then, for developing such drag laws, the input space is spanned by the parameters 

characterizing the flow as well as the time of shock passage, so that the transient drag 

behavior can be learnt by the ANN and retained in the form: 𝐷(𝑡) = 𝑓(𝑀,
𝜌𝑝

𝜌𝑓
, 𝜑𝑝, 𝑑, 𝑡),  

“Lifting” information from meso-scale calculations 

The driving force behind particle motion in shock impacted particle laden flows is 

the drag force produced on the particle. Once a shock wave has passed over a particle, the 

subsequent trajectory of the particle can be determined from Newton’s law if the impulse 

provided to the particle by the shock is known. To model a particle’s trajectory at the 

macro-scale, information must be “lifted” from the meso-scale. To limit the amount of 

information passage between scales, only the most pertinent data is passed. A particle’s 

position, trajectory and velocity are dependent only on the initial location, mass and force 

applied. Since the force is transient in nature, its characteristics must be quantified. When 

viewing a shocked particle drag curve (Figure 12), it is evident that there is a peak point 

encountered and the drag force decays over a certain interval of time. These two values are 

maximum drag coefficient, 𝐶𝑑𝑚𝑎𝑥
and relaxation time, τr. Once the drag versus time curve 

is established and the 𝐶𝑑𝑚𝑎𝑥
 and τr is known, the total impulse, It , can be computed as the 

area under the curve. For a standard drag curve (obtained from experiment or simulation), 

we can set τr to be represented by exponential decay and thus the impulse would be: 
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 𝐼𝑡 = ∫ 𝐶𝑑𝑚𝑎𝑥
∗ 𝑒

−𝑡
𝜏𝑟

⁄𝑡𝑓

𝑡𝑜
 Equation 2 

where It is the impulse, to is the impact time, tf is the final time, 𝐶𝑑𝑚𝑎𝑥
 is the maximum drag 

force, t is time, and τr is the relaxation time. It turns out that in macro-scale calculations, 

the quantity of interest is the It. In addition, since the application of It acts over a time 

characterized by τr, once these two values are known, the momentum change of a particle 

hit by a shock can be calculated. These two pieces of information are all that is needed to 

quantify a particle’s trajectory in a macro-scale calculation. Thus, the ANN can be trained 

to learn these two quantities as functions of the input parameters.  

 

Macro-scale calculations 

Since the main idea behind using an ANN-based learning scheme was to create an 

“equation-free” lifting scheme,(40)(46)(55) macro-scale calculations can employ the 

information obtained from the ANN in effecting Lagrangian particle motion. Given the 

Mach number, 
𝜌𝑝

𝜌𝑓
, and 𝑑𝑝, an ANN can predict 𝐶𝑑𝑚𝑎𝑥

 and τr. These values can then be 

placed in a Lagrangian algorithm using Newton’s second law and the particle trajectory 

calculated.  

 

The above represents the main idea pursued in this thesis. The ANN is used to “lift” 

information from detailed meso-scale calculations (or perhaps even from experiments if 

they are available). The macro-scale calculations access the lifted information by simply 

querying the ANN (a procedure that rapidly provides information to the macro-scale on 

fairly complicated behavior of the particles as the meso-scale). The macro-scale 
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calculations are then advanced further and information is accessed from the ANN at each 

step of the macro-calculation. This type of interaction between the micro- and macro-scale, 

effected by trained ANNs represents a first step in developing a true multiscale simulation 

capability, in which it may be necessary to perform meso-scale simulations in tandem with 

macro-scale simulations, in a “patch dynamics” and “gap-tooth” framework.(19)(18) Then 

the ANN learning process will proceed alongside the querying process and the micro- and 

macro-calculations will need to be synchronized in some way. This rather elaborate setting 

for performing multiscale simulations will benefit from massively parallel computations 

on large processor clusters; the key issue then will be to efficiently orchestrate the micro- 

and macro-computations along with model assimilation using ANNs.   
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CHAPTER IV:    

NUMERICS AND CALCULATIONS 

Formulation 

It is noted that the specific application of the methods developed in this thesis is the 

interaction of a shock wave and a dusty gas. We recall the reader to the illustration in Figure 

1 and 2 of Chapter 1, where a shock traveling from left to right passes over a cloud of 

particles, conveying momentum to the particle clouds. While the low solid fraction cloud 

disperses in an amorphous fashion, the high volume fraction cloud assumes a triangular 

form. We seek to simulate this difference in behavior in a multiscale simulation framework.  

The key difference between the two cases mentioned above (and pictured in Figures 1 and 

2 of Chapter 1) is that in the high-volume fraction case the inter-particle effects (such as 

shielding, shock reflections etc.) have a significant effect on the dynamics of the particle. 

Simple drag laws derived for single particles cannot be applied to obtain the behavior 

shown in Figure 2. To obtain quantification of these inter-particle interaction effects, 

detailed meso-scale calculations are performed on smaller clusters of particles and the 

behavior of a typical (representative) particle is to be learnt using the ANN.  These meso-

scale calculations are in the category of DNS, i.e. they are highly resolved. The 

computational setup for such simulations would require a domain large enough to contain 

the incident shockwave, the cloud of particles, bow shocks, and shock reflections without 

major wall interference. However, the grid size would need to be small enough to capture 

necessary details of shock-particle interaction, particle motion, shock wave dynamics, 

transient forces, and sharp interfaces. To accurately model at the meso-scale the physics of 

shock-impacted particle laden flows need to be understood. 



37 
 

 

Physics 

There are two main things to note in the physics of shock impacted particle-laden 

flows, they are the jumps in properties across the shock wave and the shock wave particle 

interaction that occurs. Most of the other properties follow standard physics in fluid flow 

and multi-phase interaction. In our case we are particularly interested in the shock wave in 

air. For shock-particle interaction, there are many other areas of consideration including 

the development of a bow shock that transmits much more drag to a particle than standard 

incompressible fluid flow would predict. Current drag laws for supersonic flow were 

obtained through experimental setups.(74) Some drag correlations (for spherical particles 

embedded in supersonic flow) are listed in Table 2. Some of the first numerical attempts 

to quantify drag forces were to use Stokes drag, this lead to the normal drag laws we have 

seen in regions of low Re as in Error! Reference source not found..(75) Stokes drag d

isregarded turbulence, and at supersonic speeds, the kinematic boundary layer responsible 

for turbulence would not develop quick enough to have a significant effect on the drag.(76) 

However, when a shock wave encounters an interface, the steep jump in fluid properties 

produces a sharp jump in drag force.  This step jump is purely due to the pressure 

differences on the particle surface due to the passage of the shock. Once the incident shock 

has passed over the surface and the reflected shock has formed a standing bow shock wave 

ahead of the particle a steady-state in the drag is reached. If the particle is free to move the 

final state of the particle is one of constant velocity and the drag on the particle goes to 

zero. All of these features of shock particle interaction must be captured by a drag law; this 

is obviously very difficult to do in empirical models. Thus, most previous work has resorted 

to using drag laws as functions of Re and Mach to determine drag such as the ones in Table 

2. This type of drag laws does not explicitly define unsteady drag but rather an overall drag 

coefficient once the shock has already passed.  
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Table 2: Drag Laws 

Paper Author(s): Coefficient of Drag Equation:  

“Standard” 

Clift (1978) (77) 

 

 

Equation 3 

Newton 
(as cited by (78)) 

𝐶𝑑 = 0.44 
 

Equation 4 

Stokes 
(as cited by (78)) 

𝐶𝑑 = 24
𝑅𝑒⁄  Equation 5 

Oseen 
(as cited by (78)) 

𝐶𝑑 =
24

𝑅𝑒
(1 +

3

16
𝑅𝑒) Equation 6 

Sommerfeld(41) 𝐶𝑑 = 112 ∗ 𝑅𝑒−0.98  Equation 7 

Boiko(1), Fedorov(79), 

Khmel(80) 
𝐶𝑑 = (1 +  𝑒

−0.43
𝑀4.67 ) ∗ (0.38 +

24

𝑅𝑒
+

4

𝑅𝑒0.5
) Equation 8 

Saito(78) 𝐶𝑑 = 0.48 − 28 ∗ 𝑅𝑒−0.85 Equation 9 

Saito(81) 𝐶𝑑 =  
2𝑓

𝜌 ∗ 𝑈2 ∗ 𝜋 ∗ 𝑟2
 Equation 10 

Kosinski(82) 𝐶𝑑 =
24

𝑅𝑒
(1 + 0.183 ∗ 𝑅𝑒0.5) + 0.42 Equation 11 

Kosinski(83) 𝐶𝑑 =
24

𝑅𝑒
(1 + 0.15 ∗ 𝑅𝑒0.687) Equation 12 
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Ben-Dor(84)(85) 
𝐶𝑑 =

24

𝑅𝑒
(1 + 0.15 ∗ 𝑅𝑒0.687)

+
42

1 + 425000 ∗ 𝑅𝑒−1.16
 

Equation 13 

Wang(86) 𝐶𝑑 = 0.48 + 28 ∗  𝑅𝑒−0.85 Equation 14 

Igra(87) 

log10(Cd ) = 7.8231 − 5.8137(log10Re)
+ 1.4129(log10Re)2

− 0.1146(log10Re)3 

Equation 15 

 

 

Figure 13: Comparison of “Standard”, Newton, Stokes and Oseen drag laws(78) 

 

As seen above, there are a variety of drag laws producing essentially comparable 

magnitudes of drag. Interestingly they are all cast in terms of a Reynolds number, following 

conventional practice along the lines of Stokes and Oseen drag laws and subsequent 

corrections for incompressible flows.  Due to the fact that drag on a particle is transient and 

drag law equations are heavily dependent on relative velocity, there is no method utilizing 

drag laws to explicitly predict the drag force on a particle.  However, as shown below, 

when a particle is impacted by a shock the primary forces impelling the particle are inertial. 

In fact, for small enough particles (i.e. in the micron-range), shock passage is rapid enough 



40 
 

 

that viscous effects can be neglected and the Euler equations can be employed to predict 

forces on the particles; this is the approach taken in this work; then, viscous effects come 

into play at much longer time scales. Thus, it is puzzling that all of the drag laws are cast 

in terms of a Reynolds number for a purely inertia-dominated system. In the present work, 

recognizing that a shock impinging on a particle conveys momentum to the particles purely 

due to inertial effects, the drag on the particle is obtained without recourse to the Reynolds 

number on the particle. The main physical effects that act on the particles in the meso-scale 

simulations are the pressure forces that arise due to the effect of the incident shock and the 

complex shock interactions that occur over short time scales. Secondly, the current ANN-

based framework does not seek to develop a drag law as in Table 1, but assimilates the 

drag as a function implicit in the trained ANN. 

 

Scaling and Variation 

Here we reason that the application of the Euler equations is appropriate for the 

case of particles being impinged upon by a shock, a system that seeks to emulate the one 

shown in Boiko’s experiments (Figures 1 and 2, Chapter 1). For a shock overpassing a 

spherical particle, one can separate drag into inertial drag and viscous drag. This is because 

these two types of drag operate and two widely separated  time scales.  The inertial time 

scale can be estimated as: 

 𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 =  
𝑑𝑝

𝑈∞
=  

𝑑𝑝

𝑎
∗

𝑎

𝑈∞
=  

𝑑𝑝

𝑎
∗

1

𝑀
 Equation 16 

and the viscous time scale as: 

 𝜏𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =  
𝑑𝑝

2

𝜈
=  

𝑑𝑝

𝑈∞
∗

𝑑𝑝𝑈∞

𝜈
=  

𝑑𝑝

𝑈∞
∗ 𝑅𝑒 Equation 17 
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The ratio between the inertial and viscous time scale is: 

 
𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

𝜏𝑣𝑖𝑠𝑐𝑜𝑢𝑠
= (

𝑑𝑝

𝑎

1

𝑀
) ∗ (

𝑈∞

𝑑𝑝

1

𝑅𝑒
) =  (

𝑈∞

𝑎

1

𝑀
) ∗ (

1

𝑅𝑒
) = 𝑅𝑒−1 Equation 18 

where dp is the particle diameter, U∞ is the flow velocity, a is the speed of sound, M is the 

Mach number, ν is the kinematic viscosity, and Re is the Reynolds number. The Reynolds 

number is defined as the ratio of inertial forces to viscous forces. For high speed 

compressible flows, the Reynolds number is very large. It usually lies in the range of 105 

to 106 even for small particles. The implication is that the effects of the viscosity of a fluid 

would not be significant until the shock is already 105 to 106 particle diameters away;  thus 

in determining the motion of particles in the instants following shock impingement 

viscosity may be neglected and the driving force behind shocked particle motion is mainly 

inertial drag from the shock wave. 

For the purpose of making comparisons, our simulations were kept fairly close to 

numerical calculations (78) (88) and experiments performed(1)(89) and published by others. As 

mentioned before the parameter space is defined by the Mach number, the particle volume 

fraction, the relative density of the particle to the fluid and time. Mach numbers were set 

between 1.2 and 4.0, 
𝜌𝑝

𝜌𝑓
 was kept between 100 and 3100, and 𝜑𝑝 between 2.0% and 22.4% 

when large particle arrays were used. For larger particle arrays the setup is similar to the 

41 particle cases; whose setup is seen in Figure 14. The shock wave was placed at 5 units 

from the left wall and traveled to the right. 



42 
 

 

 

Figure 14: 41 Particle array setup 

Assumptions 

Because the physics of the problem certain assumptions can be made to simplify 

the problem without sacrificing accuracy of results. The following list contains the 

assumptions used and what they entail:  

- The forces of gravity are negligible; the weight of each particle and movement 

affected by gravity and buoyancy are neglected in comparison to the drag forces..  

- The fluid phase behaves as an ideal gas; the equation of state is the same as the 

ideal gas law.  

- The gas and particles are calorically perfect; the specific heat values are constant 

for both phases.  

- The solid particles are perfectly rigid; they undergo no deformation.  

- There are no collisions; simulations stop when particle level-sets come in contact. 

In the macro-scale Lagrangian advection, particles are treated as points and may 

overlap.  
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- Thermal boundary layers do not develop in the time frame of shock-particle 

interaction;  therefore adiabatic particle surfaces   are assumed, thermal 

conductivity is set to zero. 

- Kinetic boundary layers do not develop in the time domain; the model is inviscid, 

dynamic viscosity is ignored, no particle rotation occurs. 

- Particle size is much large than molecular scale; Brownian motion is ignored, no 

random particle motion exists, intrinsic properties remain constant. 

- Particles are inert; no chemical reaction occurs at boundaries. 

- Remaining assumptions are case specific; e.g. moving/non-moving particles, 

perfect symmetry, etc. 

Governing Equations 

The method used solved a set of a governing set of hyperbolic equations for 

compressible fluid flow. These governing equations when simplified and placed in 

conservation form in Cartesian coordinates are: 

 

S=
z

H
+

y

G
+

x

F
+

t

U 


















 

Equation 19 
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Equation 20 
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where E is the total internal energy and e is the specific internal energy. For the Euler 

equations in Cartesian coordinates, the source term S


, is set to zero. The extension of the 

methodology to the Navier-Stokes equations is fairly straightforward. Closure for the 

governing equations can be achieved by utilizing a stiffened equation of state, 

    γPγρe=P 1  Equation 21 

where γ is the specific heat ratio and P is a material dependent constant. Under the 

assumption of an ideal gas, we would then have 0=P  and 𝛾 = 𝑐𝑝 𝑐𝑣⁄ . 

For stiff fluids such as water, the specific heat ratio and the material dependent 

constant would assume the values of 5.5 GPa and 6.13 GPa, respectively. Lastly, from the 

definition of the speed of sound and using the stiffened equation of state, the speed of sound 

can be calculated by 

 
 

ρ

P+Pγ
=c 

 

Equation 22 

Immersed Boundary Method 

For the consideration of boundary conditions at an interface, an immersed boundary 

method is used. The algorithm used is an Eulerian-Lagrangian algorithm for interface 

tracking in three dimensions, otherwise known as ELAFINT3D. The ELAFINT3D code 

utilizes a sharp interface treatment method as described by Sambasivan.(90) The sharp 

interface treatment requires continuous tracking and representation for the interface 

surface. To represent the embedded interface surfaces, Level-sets were used, first 

introduced by Osher and Sethian.(91)(92) The level-set is simply an intersection between a 
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defined level-set field and the working plane. The level-set field is advected using the level-

set advection equation: 

 0



ll

l V
t


 

 Equation 23 

where φl represents the level-set and lV


represents the level-set velocity field for the lth 

embedded surface. For the solution methodology, a fourth-order essentially non-oscillatory 

scheme for was used for spatial discretization and a fourth order Runge-Kutta time 

integration was used to solve the level-set advection equation. The value of the level-set 

field at φl any point is the signed normal distance from the lth interface with φl ≤ 0 inside 

the immersed boundary and φl ≥ 0 outside. The interface is implicitly determined by the 

zero level-set field defined when φl = 0 , and where the contours represent the lth immersed 

boundary. The normal vector and the curvature at the interface can be computed from the 

level-set field by, 

 
L

l

ln







 




and 





n

=κ



 Equation 24 

Boundary Conditions 

To handle the jumps in the mass, momentum and energy fluxes along with the 

material properties across the interface, the tracked interface will have to be coupled with 

the flow solver to insure an accurate depiction. In the ghost fluid method, this translates to 

suitably populating the number of ghost points.(90) At the interface of a solid body 

immersed in a compressible flow, the following boundary conditions were applied for 

velocity, temperature and pressure fields. For no-penetration for normal velocity: 
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 nn U=v
 

Equation 25 

where Un is the center of mass velocity for the embedded rigid object. To satisfy the slip 

condition for the tangential velocity: 

 01 =
n

vt





  
and  02 =

n

vt




 Equation 26 

To satisfy the adiabatic temperature condition: 

 0=
n

T




 Equation 27 

To keep the normal force pressure balance: 

 ns

ts

aρ
R

vρ
=

n

p





2
1

 Equation 28 

and 

 nV=vn
ˆ


,  1

1
t̂V=vt 


, 2

2
t̂V=vt 


 Equation 29 

where vn is the normal velocity, vt is the tangential velocity in the interface referenced 

curvilinear coordinate, V


is the velocity vector in the global Cartesian coordinate, n̂ , 1̂t , 

2̂t are the normal and tangential vectors, R is the radius of curvature and a n is the 

acceleration of the interface; the set of boundary conditions that govern the behavior of the 

flow near the embedded solid body and must be enforced on the real fluid by suitably 

populating the corresponding ghost points. (90) 

Verification 

To insure the reliability of our code, the computed drag force obtained was non-

dimensionalized using the same parameters as Drikakis et al. (88) The comparison of the 

non-dimensional drag force is shown in Figure 15. A visual comparison between the results 
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obtained from the present approach and that of Drikakis et al. is shown in Figure 16 using 

isodensity lines. The transient drag curves produced by Drikakis et al. and those produced 

by the present calculations show minimal difference in peak magnitude and are rather 

similar, even though Drikakis et al. employed Navier-Stokes computations for rather 

modest Reynolds numbers for their calculations.  The similarity of the drag behavior for 

the Euler and Navier-Stokes computations supports the present inviscid computations for 

the shock-particle interaction, particularly for the high Reynolds numbers that apply to the 

particles considered by Boiko et al and targeted in the present work.  

 

Figure 15: Numerical Drag Comparison 
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Figure 16: Isodensity Contours. Drikakis (top), ELAFINT3D (bottom)  

 

In the next chapter, we employ the computational approach outlined above to 

compute shocked flows around single particles and particle clusters and describe the 

process of training the ANN to assimilate the particle drag function.  
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CHAPTER V:    

RESULTS 

Single Particle Cases 

 The ELAFINT3D code was first used to test a cylindrical particle in a fluid 

flow during varying conditions. This included experiments of post-shocked flow, a shocked 

stationary particle, and shocked moving particle. Later on, cases of shocked particle arrays 

with large number of particles were examined. The single particle tests were set up to 

illustrate the evolution of data processing the ANN needed to learn in an order of increasing 

complexity. 

1. Post-Shocked Flow 

The first experiment for testing the capabilities of the neural network was the case 

of post-shocked flow around a cylinder. The goal of the post shocked flow data set is to 

analyze whether or not the artificial neural network is capable of accurately predicting the 

drag curve which is simple, positive in value, and derivative is of constant sign. In the post 

shocked particle case, the particle is placed into a flow field after the shock wave has 

already passed. An example is shown as a Schlieren image where the shock is past the 

cylinder moving toward the right in Figure 17. No reflections or slip lines occur, thus the 

force on the cylinder is only due to the impending flow and bow shock development. 
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Figure 17: Post Shocked Particle Schlieren Image 

 

For the post-shocked flow experiment, the cylindrical particle was allowed to move 

based on fluid forces. The shock wave was placed after the cylinder so that the horizontal 

force imparted was an effect of the fluid interaction and not the shock. The particle 

immediately begins to feel drag force and the incident shock wave is uninterrupted behind 

the particle. The boundary conditions set for this experiment are the same as all of the 

following single particle trials. The domain was set with the inlet on the left side and the 

outlet on the right. The top and bottom of the domain was set to a reflective boundary 

condition.  

This experiment was analyzed at Mach numbers 1.4, 1.5, 1.7, 1.8, 2.0, and 2.2. The 

drag curve for Mach = 1.8 was left out so one could test the capabilities of the artificial 

neural network and its predictions. The drag forces were non-dimensionalized and 

calculated every time step. The curves produced by the ELAFINT3D code were made into 

the training data set provided to the artificial neural network. These curves are shown in 

Figure 18. 
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Figure 18: Drag Curves for Post-Shocked Cylinder 

 

The neural network was setup to read the drag data and fit a curve to the data using 

20 neurons and 1000 iterations. With the training data normalized, the neural network was 

capable of performing all the iterations in less than 30 seconds, while the time to run the 

full numerical cases, averaged around 40,000 seconds. The prediction of the drag curve at 

M = 1.8 as well as the remaining case of Mach 1.8 run through numerical methods are 

plotted together in Figure 19. 
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Figure 19: Post-shocked ANN prediction 

 

The neural network produced a drag curve that agreed well with the computed drag 

curve. The simple nature of the drag curve compared to the time required by computational 

fluid dynamics illustrated the necessity of a faster method to extract such data. To better 

understand the prediction abilities of an artificial neural network and its application to fluid 

modeling, a more realistic example is chosen for the next section. 

2. Stationary Particle 

For the second test, the particle was held stationary and then hit with a shock. The 

boundary conditions were set the same as the post-shocked particle case except the lower 

wall set as symmetry. A grid domain of 500 by 250 cells was used for the drag curves 

calculated from the ELAFINT3D code. This was to match and verify the results by the 

ELAFINT3D code to those of Drikakis (88) as seen previously. The initial starting distance 

for the shock wave was set more than the radius of the cylinder away from the cylinder 
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itself. The shock was allowed to impact the cylinder and continue to travel as data for 

horizontal force was recorded over time. A Schlieren image of the one of the cases is shown 

in Figure 20. 

 

Figure 20: Stationary Particle Schlieren Image 

 

With a smaller domain size, it would be reasonable to test the effect of grid size and 

the use of local mesh refinement. For the fine grid, the number of grid cells was increased 

by four times with the grid sizes half the original. For the local mesh refinement two levels 

of refinement were used to provide grid cells near the interface with edges a fourth of the 

original. It was discovered that both the finer grid structure and the use of local mesh 

refinement show some differences. The differences were rather negligible given the 

previous error for the neural network's prediction, and in the interest of time, the remaining 

cases were carried out with the original grid size. The resulting drag curves from the 

ELAFINT3D code at Mach numbers ranging from 1.1 to 2.6 are shown in Figure 21. 
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Figure 21: Drag Curves for Stationary Cylinder 

 

The ANN was trained using this data set and the same number of neurons and 

number of iterations were used. The same order of computational time was observed as in 

the post-shocked flow calculations. The prediction curve of the neural network as well as 

the calculated transient drag curve is displayed in Figure 22. 

 

Figure 22: ANN Drag Prediction, Mach 1.7 
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The neural network was capable of matching the curve even into the negative force 

domain. The negative drag force arises when the incident normal shock traverses to the 

rear of the cylinder and a reflected bow shock has formed at the front of the cylinder, which 

leads to a higher pressure at the rear for a short period of time. However, in this case, the 

peak value of the drag was underestimated by the neural network. The cause of this is due 

to the neural network’s activation function, and the summation of which is fitting a series 

of sigmoid functions to the curve. With data evenly distributed, a small number of data 

points exist near the peak. The unbalanced set causes the neural network to spend more 

time fitting to the rest of the curve than the peak. Another reason is that the neural network 

is attempting to fit with a global array, thus the overall prediction curve will be similar to 

a smoothing function and reduce peaks. The sharper the peak, the less likely the neural 

network will capture an accurate depiction. For a moving particle these sharper peaks do 

occur. Several solutions including the use of wavelet basis functions, neural network 

expansion, multi-resolution and segmentation exist; these will be discussed in detail later. 

3. Moving Particle 

For the moving particle problem, the boundary conditions, the initial conditions, 

domain size, and particle size remained unchanged from the previous experiment. The 

chosen Mach numbers allow for easier comparison to conditions used in various 

experiments.(73) The artificial neural network was set up to segment the drag curves in time 

to facilitate more customized fitting in the respective segments. This would allow for a 

better fit to the drag curve. The training data provided to the artificial neural network is 

shown in Figure 23. 
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Figure 23: Moving Particle Drag Curves 

 

The total training time for the neural network was still under 30 seconds because 

the amount of data per iteration for each partition of the neural network was reduced. The 

root mean square error was significantly reduced and was less than 0.5% for 700 data points 

in the later time section. The resulting prediction output was also segmented according to 

which partition of the artificial neural network was responsible for learning the curve 

characteristics of the function. The resulting 40 neuron, partitioned artificial neural network 

produced a remarkably good prediction as shown in Figure 24. 
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Figure 24: ANN Prediction, Mach 1.3 

Multiple Particle Cases 

The drag versus time curve for a single particle is fairly easily predicted by an 

artificial neural network with only one interacting shock wave. It may be necessary to 

implement another method of data assimilation to describe more complicated functions and 

drag curves. The previous experiments grew in difficulty to examine the different 

properties of supersonic fluid flow around a cylindrical particle. From the post-shocked 

experiment, the neural network observed that the drag increased as the Mach number 

increased and the drag went down over time. The drag force of the stationary particle 

displayed negative values. With the cylinder moving, the drag peaks became more 

prominent. A single neural network is able to derive the drag correlations from numerical 

methods given a single particle. When there is particle laden flow field, a new approach is 

needed to extract the drag correlations. The necessity to analyze the different scales using 

multi-resolution analysis may become apparent. This becomes even more important to data 
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processing when the correlations are dependent on multiple parameters, as expected for the 

present problem. Another experiment was setup to test the ability of a multi-resolution 

augmented artificial neural network, or MRAANN, in learning more complicated flows. 

Multiple Moving Particles 

Here a dramatically different approach was used. Due to the increase in complexity 

for a particle array, multi-resolution analysis(93) was first performed on the data to examine 

if there are any correlations relating to each particle and varying 𝜑𝑝. The boundary 

conditions on the top and bottom were changed to symmetry boundary conditions to 

simulate an infinite particle array. One constant Mach number was used; for all the 

experiments of moving particles, M = 1.22 which is commonly used.(73)(89) Ten particles 

were staggered, in the arrangement in Figure 25. 

 

 

Figure 25: Schlieren Image of 10 Particle Array 

 

To test other more complicated correlations for drag forces, more variables were 

introduced. In the multiple particle experiment, the MRAANN would need to learn the 

drag correlations for ten different particles, and different 𝜑𝑝. To change the 𝜑𝑝, the radii 

of the cylinders varied. The radii used were 0.25, .030, 0.35, and 0.40 units. Particles were 

set one ahead of each other 1 unit apart. The boundary conditions on the top and bottom 

edges were set as symmetry conditions to simulate an infinite vertical array. With the 
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cylinders set close together, reflected shock waves and expansion waves were sent in every 

direction. The results are several drag curves with many peaks and troughs; this type of 

transient drag curve is typical of arrays and arises due to the multiple shock reflections and 

interactions between these shocks and the particles.(94) The drag curve for the third particle 

in the array is shown in Figure 26. 

 

Figure 26: Drag Curve for 3rd Particle in Array 

 

To aid the learning process for the neural network, the multi-resolution analysis process 

performed 6 levels of multi-resolution transforms, using the algorithm developed by Neal 

Grieb in his MS thesis(95), Many styles of multi-resolution neural network have been 

attempted.(53)(96) The basic idea of multi-resolution neural networks is to partition the ANN 

to allocate neurons for more complex learning. Boubez and Peskin (96) demonstrate 

Receptive Field Partitioning in their work. For ours, the ANN expansion would occur 

globally. The ANN would begin with an initial set of weights and neurons to learn the 

coarsest level and then pass those weights to new neurons to help learn the next 

transformation level. A pseudo-code of this process is provided in the appendix. The 
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coarsest level of the multi-resolution transform of the drag curve shown in Figure 25 is 

shown in Figure 27 as a dashed line. The neural network was given the coarse training data 

and was able to match it well. The predicted curve is shown in Figure 27 as a solid line. 

 

Figure 27: MRT and ANN Predicted Drag Curve 

 

Each time the neural network learned a level, the training speed of the neural network 

would increase. The amount of time it took to learn a new segment decreased along with 

the error also. Shown in Figure 28 are the learning curves of the artificial neural network 

without any segmentation or multi-resolution analysis represented by the dashed line and 

the learning curve with segmentation and multi-resolution analysis represented by the solid 

line. 
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Figure 28: Learning Improvement 

 

One can see that there was a decrease in error aided by the multi-resolution analysis 

(MRA). Once the MRAANN was able improve upon the function fitting abilities, it needed 

to be tested in full. 6 levels of multi resolution transforms were performed with 32 neural 

network segments. This correlates to roughly 2,000 iterations with 500 hidden neurons. By 

probing the MRAANN, a 3d hyper surface was able to be constructed to visually display 

the drag correlation with both time and 𝜑𝑝. This surface is displayed in Figure 29.  
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Figure 29: 3D Drag Curve Hyper Surface 

 

The particle of radius 0.3 was left out of the training set for the MRAANN to predict 

what the drag curve would be. Three sets of training data was provided to the MRAANN 

to learn at each of the levels, for radii of 0.25, 0.35, and 0.40. The training data, numerical 

solution, and predicted drag curve are displayed together to observe overall characteristics 

in Figure 30. The training sets are displayed as the solid lines and show the progression in 

drag development. The dotted line is the actual drag curve obtained from the flow 

simulation while the dashed line is the prediction from the MRAANN. With all the data 

together, one can observe the difficulty in learning the complex behavior of particle shock 

interaction. 



63 
 

 

 

Figure 30: Training Data, ANN Prediction (dashed) and Actual Drag Curve (dotted) 

 

Without seeing the data prior to the ANN prediction, it is difficult to tell which of the 

broken lines the original set is and which the ANN prediction is. The MRAANN is 

remarkably accurate in reproducing the data set with intermediate peaks and troughs 

included. There are many variables affecting the drag curve that cannot be explicitly 

defined by any function. Even with the complex behavior entailed by several reflected 

shocks in a regular array of spheres, the MRAANN is capable of adapting to the local 

maxima and minima of the drag versus time curves. However, note that in a dusty gas, 

particles are not regularly arranged and the question remains how one could extract data 

for such disordered arrangements. The solution to this problem will be addressed in the 

following. 
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Multiple Particle Clouds 

In order to obtain a general drag curve with characteristics that could be applied to 

any particle embedded in a cloud, there needed to be data obtained from many particles in 

many possible arrangements. The best way to obtain data like this was to run simulations 

of randomly seeded clouds and to define a “representative particle (RP)” embedded in the 

flow; much as in the case of “representative elementary volumes” (RVEs) employed in 

volume-averaged formulations of multiphase flows One way to define such representative 

particles is to locate them at the center of a cloud of particles; this avoids edge effects and 

wave reflections from domain boundaries. The representative particles for one particular 

case are illustrated by the outline in Figure 30.  To ensure the proper tracking of the same 

centralized particles, a particle array was first formed and then the particle centers were 

perturbed. The boundary conditions were set to simulate a shock tube for comparison to 

the works Boiko et al.(1), Tanno et al.(73) and Sun et al.(89) The left edge of the domain was 

set as an inlet, the right edge an outlet, and both the top and bottom edges were set as 

reflective boundaries. An example of the flow can be seen in Figure 31. 
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Figure 31: Schlieren Image and RPs of Shocked Cloud (Φvol = 22.4%) 

 

The particles in this case number 41, each are seeded in a respective location where 

a 4 by 4 grid of 16 particles is embedded in 5 by 5 grid of 25 particles as seen in Figure 14. 

This enabled the users to easily code the location of each particle, yet create an array where 

every particle is staggered off the one directly in front. The slight randomization completed 

the task of attempting to simulate a random dispersal of particles while still being able to 

easily track a few. The few that were important enough were the particles embedded 

directly in the center of the array. The center particles experience a much more randomized 

collision of reflected shocks by the few rows and columns of particles behind and to each 



66 
 

 

side. The drag curves for these particles were extracted by the integration of pressure over 

the level set boundary. The drag curves of 5 particles from the center of the cloud were 

then averaged. The results of the averaging of the drag curves for the RPs can be seen as 

the bold curve in Figure 32. 

 

 

Figure 32: Averaged drag curve (41 random particle array, Mach 2.8) 

 

Apart from the Mach number, the other parameters that can affect the behavior of 

particles in a cloud include the volume fraction of particles, the particle density relative to 

the fluid, particle shape, collisions between particles and viscous effects as controlled by 

the Reynolds number. The last three effects are not considered in this work as they are 

expected to have secondary effects in the initial phase of shock-particle interactions.  Of 

the three parameters considered, namely Mach number (M), particle density ratio (ρp/ρf) 

and volume fraction 𝜑𝑝.   The effects of the 𝜑𝑝 variable are much more easily verified by 
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direct viewing of the flow field. Upon comparison of the shape of the incident shock 

already passed over the particle arrays in Error! Reference source not found. and Figure 

33, there is a very definitive concavity resulting from the passage over the more dense 

cloud. Such an obvious change (due to the higher impedance to shock propagation 

presented by the denser cloud) in the flow field would imply an equally large effect in drag 

force and thus the motion of the particles inside the cloud. Even though all other parameters 

were set the same, the dense cloud case in Figure 33 depicts more of a compressing of the 

cloud along the direction of flow. 

 

  

Figure 33: Schlieren image of shocked 41 particle cloud (𝜑𝑝 = 22.4%) 
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Volume fraction, 𝜑𝑝, is an important parameter that is different throughout any dust 

cloud and changes over time. It is only one of a few parameters that we chose to vary that 

we deemed to have the largest affect on particle motion. A comparison of the averaged 

drag curves(for the representative particle) for varied 𝜑𝑝 can be seen in Figure 34. 

 

Figure 34: Comparison of the effect of 𝜑𝑝 

It may be deduced that the increase of 𝜑𝑝 decreases the impulse It delivered by the 

shock on a particle. The 𝐶𝑑𝑚𝑎𝑥
 force experienced remains fairly constant but the decay of 

the force diminishes much more rapidly. This is due to the decreases in strength of the 

shock waves impinging on the RPs in the center of the cloud. Another more obvious 

variable that affects the drag force felt by shocked particles is the Mach number. In Figure 

35 the effect of the Mach number is very obvious. As the Mach number increases, the 

𝐶𝑑𝑚𝑎𝑥
 felt rises dramatically. 
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Figure 35: Comparison of the effect of Mach number 

 

This dramatic rise is directly correlated to the shock strength in the high mach 

number flow. It is the flow velocity that in turns defines the Reynolds number that most 

fluid codes based on the non-dimensional parameters. This is why so many drag laws 

depend on the Reynolds number, but the Mach number is  a far more relevant  parameter 

in the initial shock-particle interaction phase. It has already been shown that the main 

separating factor between Reynolds and Mach number is viscosity. It has also been shown 

that viscosity does not affect the drag force on a particle this early. This is why we believe 

that developing the variation of the drag on an RP with respect to the Mach number in an 

inviscid model is a better parameter for lifting drag information from the meso-scale to the 

macro-scale. 
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 The next parameter examined in our experiments was that of the mass of the 

particle. In terms of non-dimensional variables, this correlates to the mass of the particle 

as a ratio of the density of the solid particle and the fluid surrounding it. Most of the 

experimental models of shock-particle interactions employed  spheres made of  acrylic and 

copper.(1) The medium used was air, and because of those models we chose to set 
𝜌𝑝

𝜌𝑓
 near 

1000. To encapsulate motion a little easier, we mainly varied the 
𝜌𝑝

𝜌𝑓
 of the particulate matter 

to be lower. The comparison of drag forces are displayed in Figure 36. The data obtained 

shows correlations per each variable, the ANN will hopefully connect them together and 

engage its application to multiscale modeling. 

 

Figure 36: Comparison of the effect of 
𝜌𝑝

𝜌𝑓
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CHAPTER VII:  

APPLICATION OF ANN-BASED LEARNING TO MULTI-SCALE 

COMPUTATIONS 

Information passage 

To utilize the correlations obtained previously to use in multi-scale modeling, 

information must be lifted from the meso-scale. The transient drag curve is quite a lot of 

information to pass between scaling levels in multiscale modeling. With regard to the drag 

curves acquired, there were two important parameters needed for particle motion. To 

determine the speed and position we would need to know the momentum transferred and 

the rate of momentum transferred. The momentum and rate of transfer can be found as an 

expression of It and τr. 

From Equation 11, we have a simple method of determining the total impulse, 𝐼𝑡, a 

particle would experience over time. Integrating Equation 11 from instant of shock impact 

to long times (when the inertia delivered by the shock has equilibrated particle motion, but 

still short enough that viscous effects can be neglected)  results in: 

 𝐼𝑡 = 𝐶𝑑𝑚𝑎𝑥
∗  𝜏𝑟 Equation 30 

The maximum drag, 𝐶𝑑𝑚𝑎𝑥
, is easily acquired, thus the next step be to fit the 

relaxation time, 𝜏𝑟, to the drag curve of each case the ANN will learn from for Mach 

number, 
𝜌𝑝

𝜌𝑓
 and 𝜑𝑝. 

Single particle motion 

For each case presented, the quantified values for particle motion, 𝐶𝑑𝑚𝑎𝑥
and 𝜏𝑟 to 

attain It were found. The value of It and τr were found by numerical integration and fitting 
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an exponential decay function by minimizing the error between the drag curve and the 

exponential function. One such fitting with the impulse highlighted can be seen in Figure 

37. 

 

Figure 37: Exponential fitting to drag curve 

 

We began with the data from our single particle cases because the drag curve fitting 

was simpler and straight forward without large errors due to the oscillations in drag. From 

that data we fed it into the ANN and obtained a hyper-surface to incorporate each variable. 

The 3 dimensional breakdown between two of the variables and there target parameter can 

be seen in the plots of Figure 38 and Figure 39 

. 
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Figure 38: ANN predicted hyper-surface for relaxation 

 

Figure 39: ANN predicted hyper-surface for It 

 

It has already been determined, and one can see from the plots, that both the It and 

τr increase with Mach number. This has been shown many times before by other 

researchers. (78) (73) (89) It is interesting that the value of It actually gets steeper as the Mach 

number increases, making it a high order relationship. It is also important to note that both 
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It and 𝜏𝑟 seem to approach zero near Mach 1. One can accredit that to the dramatic decrease 

in drag once relative velocity falls below the supersonic range. As for the effect that  
𝜌𝑝

𝜌𝑓
 

has, both It and τr level off toward higher values, as 
𝜌𝑝

𝜌𝑓
 approaches the representation of an 

infinitely massive or stationary particle. For when 
𝜌𝑝

𝜌𝑓
 approaches zero, both It and τr 

approach zero as a very small particle’s motion should nearly behave the same as the fluid. 

General Particle Motion 

It is easy to see how a single particle would behave, but with multiple particles there 

occurs many complex reflective shock waves. To ensure that the general behavior of 

shocked particles is accurately learned by a neural network, data needs to be collected from 

many particles in a random orientation. Therefore the effect of a specific array setup would 

be diluted and more general values could be collected. The values of 𝐶𝑑𝑚𝑎𝑥
force and τr are 

still the two most important parameters that can be directly obtained from the ELAFINT3D 

code. For particle motion that occurs in a dusty gas, another input parameter should be 

taken into consideration. The value of 𝜑𝑝 plays a particularly important part in shock-

impacted particle laden flows to learn how much the 𝐶𝑑𝑚𝑎𝑥
, τr and It is affected by the 𝜑𝑝 

in a multiple particle cloud, 45 different cases were performed using initial values recorded 

in Table 3. Each case had 41 particles placed in a staggered array and then randomly 

perturbed to simulate a dusty gas while still being set at a standard interval to better capture 

the affects of 𝜑𝑝. 
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Table 3: Input Parameters of Training Cases 

Mach 𝜌𝑝

𝜌𝑓
 

Φvol [%] Mach 𝜌𝑝

𝜌𝑓
 

Φvol [%] Mach 𝜌𝑝

𝜌𝑓
 

Φvol [%] 

1.2 100 2.0 2.0 1000 8.0 2.8 1000 22.4 

1.2 100 8.0 2.0 1000 12.6 2.8 3100 8.0 

1.2 100 12.6 2.0 1000 22.4 3.2 310 8.0 

1.2 310 22.4 2.4 100 8.0 3.2 310 22.4 

1.2 1000 2.0 2.4 100 22.4 3.6 100 2.0 

1.2 1000 8.0 2.4 310 2.0 3.6 100 8.0 

1.2 1000 12.6 2.8 31 8.0 3.6 100 12.6 

1.6 31 2.0 2.8 100 2.0 3.6 1000 2.0 

1.6 310 8.0 2.8 100 8.0 3.6 1000 8.0 

2.0 100 2.0 2.8 100 12.6 3.6 1000 22.4 

2.0 100 8.0 2.8 100 22.4 4.0 100 22.4 

2.0 100 12.6 2.8 310 8.0 4.0 310 2.0 

2.0 100 22.4 2.8 1000 2.0 4.0 1000 8.0 

2.0 310 12.6 2.8 1000 8.0 4.4 1000 8.0 

2.0 1000 2.0 2.8 1000 12.6 4.4 3100 12.6 

 

The ANN was trained twice, once for 𝐶𝑑𝑚𝑎𝑥
 and once for τr. The value of It is implied by 

the application of these two variables. The training period lasted for 5000 iterations with 

25 neurons and the convergence curve is seen in Figure 40. The relationship of Mach 

number and 𝜑𝑝 versus𝐶𝑑𝑚𝑎𝑥
 can be seen in Figure 41, Mach number and 𝜑𝑝 versus τr, in 

Figure 42, and Mach number and 𝜑𝑝 versus It in Figure 43. 
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Figure 40: ANN error convergence for mulitiple particles. 

 

Figure 41: ANN predicted hyper surface for 𝐶𝑑𝑚𝑎𝑥
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Figure 42: ANN Predicted hyper surface for τr 

 

Figure 43: ANN Predicted hyper surface for It 

 

It becomes obvious that the major contributor for 𝐶𝑑𝑚𝑎𝑥
 is the Mach number. The 

𝜑𝑝 does not seem to affect 𝐶𝑑𝑚𝑎𝑥
 at low Mach numbers. As for τr, both Mach number and 

𝜑𝑝 have great affects. At low Mach numbers, the τr greatly increases. Drag force at 

subsonic velocities are relatively slow to apply. The 𝜑𝑝 has a major affect only at low Mach 
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numbers. At higher Mach numbers the effect of 𝜑𝑝 goes away, soon thereafter, one may 

assume that the particles are no longer going to be shielded by particles, but actually hit by 

them. The surface trend for It is somewhat expected, the general trend being that It increases 

as the 𝜑𝑝 decreases and Mach number increases. For the averaged data for all cases, refer 

to Table 4 in the appendix. 

Of course there exist errors in our model that arise from many areas, for example 

the averaging of multiple individually shocked particles. Very little error was displayed in 

the single particle cases because there was no random particle-shock interaction from 

reflections. Testing consisted of randomly selecting a single data point and removing it 

from the training set. The ANN would be reset and learn the new training set without the 

point being tested. The ANN was then queued at the test point and was then checked for 

error. The testing phase consisted of testing a few points by this method; with only one 

point missing on a multidimensional map, visualization is difficult to show. Testing by 

selection and removal showed errors all under 2%. For the multiple particle cases, errors 

ranged greatly. During the training phase of the multiple particle cases, the average error 

for the training data was less than 1%. However, due to the unsteady curvature and some 

areas of inconsistent trends, the average error for the prediction of randomly removed and 

tested points inside the ANN prediction curve for It were 7.3%. The largest error for the 

tested cases resulted from the Mach 4.4 cases which are also responsible for the extra bump 

on the plots of 𝐶𝑑𝑚𝑎𝑥
 and It. When cases where the Mach number was 4.0 or above was left 

out and tested for, errors between 12.2% and 14.6% would occur.  
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Lagrangian Advection 

Now that we have a trained ANN with the correlation of Mach number, 
𝜌𝑝

𝜌𝑓
 and 𝜑𝑝 

to It on a particle, we can use it to predict how a shock impacted particle will move. 

Restating what was mentioned before, one may use the 𝐶𝑑𝑚𝑎𝑥
 and τr to recreate a drag 

curve represented by exponential decay from the 𝐶𝑑𝑚𝑎𝑥
 at the “point” of impact. With a 

defined drag curve, the trajectory of a particle can be predicted by simple Lagrangian 

advection using Newton’s first law of motion. We performed this advection scheme with 

case data to match previous experiments of Boiko. Our data was limiting to simulating 

values of 𝜑𝑝 down to 2.0 percent due to the constraints of domain size, particles placed 

ever 15 diameters away would have produced over 5 million grid cells. The result of using 

data from the ANN and this Lagrangian advection scheme can be seen as the solid line 

alongside the experimental work of Boiko et al.(1) in Figure 44.  

 

 

Figure 44: Comparison of Lagrangian Advection 
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The symbols are directly from experimentation, the dashed line is Boiko’s 

computation, and the solid line is our Lagrangian advection using lifted behavior learned 

by the ANN. To insure the proper values of It were used, an numerical integration scheme 

was used on our data. This lead to a slightly higher initial peak and exponential 

representation tends to decay a slightly faster than normal as seen in Figure 37. The largest 

error is near the beginning where the initial impact of our model is piecewise and thus 

sharper. However, the ANN and Lagrangian advection model is a close representation of 

how a particle moves. 

Macro-Scale Phenomena 

 Now that we are able to predict movement of a particle using data from the meso-

scale, we should be able to adapt that to multiple particles at the macro-scale. With the 

ELAFINT3D code running on a serial machine with limited random access memory, we 

are currently limited to particle clouds of less than 180 particles. To maintain the same 

staggered and perturbed setup, we chose to model a cloud using 145 particles. This 

particular case ran with a domain size of 60 by 70 𝑑𝑝 and the smallest cells having a grid 

size of 0.03 𝑑𝑝 approaching 4 million cells and thus reaching the limit of memory on the 

machine. To arrive at this point, the model ran more than 25 non-dimensional units of time 

for about a wall clock time of three weeks. A Schlieren image of this case can be seen in 

Figure 45. We were able to then use the drag data from each particle to advect their location 

further. The result was merely the compression of the cloud moved a few domains along 

the flow direction. 
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Figure 45: Schlieren image of large particle cloud  

(145 particles, Mach = 2.0, 𝜑𝑝 = 8.0%) 

 

 There are no experimental demonstrations of this type of cloud; however, in the 

experimental work of Boiko et al. (1) a macro-scale phenomenon of larger and denser dusty 

gas clouds emerges. Referring once again to Figure 2 (Chapter 1), one can observe the 

formation of a sideways “V”. This is a phenomenon that arises only in the cases where the 

dust clouds are sufficiently dense. It is not observable Figure 1 or in the other cases 

performed by Boiko et al.(1) as seen in Figure 46. In each of the cases presented, a thin band 

of particles is shocked.  
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Figure 46: Shock wave particle interaction (Boiko et al.)(1) 

In any case, the Mach number and the 
𝜌𝑝

𝜌𝑓
 remains virtually the same throughout the 

whole domain, yet the particles obviously move at different velocities, which mean they 
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would have different values of It. The first two factors that arise that may affect It are 𝜑𝑝 

and the shielding of the shock wave by particles ahead in the flow domain. Shielding is of 

course directly related to 𝜑𝑝 as well as the total number of particle in the domain. Since 

the total number of particles in a domain is an extrinsic property of a dust cloud, it is not 

advisable to use it. This would have to be utilized via a decrease in Mach number. Another 

case was performed in where a triangular dust cloud was shocked to observe the effect of 

shielding. Both this case and others found that within a certain 𝜑𝑝, the total number of 

particles does not drastically affect particle motion.(1)(80)(85) Thus the main contributing 

factor to the variance in particle motion in a single domain with constant Mach number and 

𝜌𝑝

𝜌𝑓
, is 𝜑𝑝. Knowing this, a much larger simulation can be performed with drag forces 

obtained from an ANN which learned from cases with varying 𝜑𝑝. 

Macro-scale simulation 

For the macro-scale simulation, we used a Lagrangian advection scheme to move 

particles based on the drag force obtained from 𝐶𝑑𝑚𝑎𝑥
 and τr predicted by an ANN given 

Mach number, 
𝜌𝑝

𝜌𝑓
 and 𝜑𝑝. The Mach number and 

𝜌𝑝

𝜌𝑓
 was predefined while the 𝜑𝑝 was 

calculated based on the area fraction (in 2D) occupied by the particles, computed for a box 

of 20 by 20 diameters in the level set field with a domain size of 1024 by 512 grid points 

as seen in Figure 47, Figure 48 and Figure 49. 
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Figure 47: 𝜑𝑝 for sparse dust cloud 

 

Figure 48: 𝜑𝑝 for dense dust cloud 
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Figure 49: 𝜑𝑝 for dust band 

Assumptions 

To aid in modeling the shock-impacted particle-laden flow, certain assumptions 

were made. The assumptions and their implications are as follows: 

- Particles are normally distributed in both the x and y directions for dust clouds. They 

are completely still at beginning with no velocity components. 

- All small scale forces are neglected. This ignores the effects of buoyancy, gravity, 

electromagnetic forces, chemical attraction, or Brownian motion. 

- Particles are treated as points. No collisions occur in calculations and particles may 

over lap or pass through each other. To stimulate y direction and small forces, a 

random purturbment of location was included. 

- 𝜑𝑝 is computed by summing the surrounding first level set, particle volumes 

overlapping are neglected. 

- 𝐶𝑑𝑚𝑎𝑥
 force and τr computed by ANN in the first step, thus this is as if the incident 

shock impacted every particle at the same time 
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- Largest variable factor in drag is 𝜑𝑝, particles with very high 𝜑𝑝 barely move, due to 

lack of collisions. 

- For an example of the algorithm, a pseudo code has been provided in the attachments. 

General Motion 

To ascertain that indeed the formation of the “V” shaped phenomenon is due to that 

of the variation in 𝜑𝑝 several macro-scale models were performed. They included 

simulations that were drag law based, with low 𝜑𝑝, with high 𝜑𝑝, and with a uniform band 

𝜑𝑝. For the case based on a drag law, the “standard” drag law found in Table 2 was used 

to determine the force an each particle. This straightforward method and the assumptions 

made above caused every point to move roughly the same amount as seen in Figure 50.  

For the sparse dust cloud case, Figure 51, similar actions occurred due to a small 

variance in𝜑𝑝. Demonstrated experimentally, little difference in movement also occurs in 

Figure 1, of Boiko’s experiments. With 𝜑𝑝 and other parameters all the same, each particle 

should experience the same motion. When the density of particle is increased such as in 

Figure 52, a “V” phenomenon would appear as seen in Figure 2 by Boiko et al.(1) The 

formation of this phenomenon occurs only at the macro-scale when there is a wide range 

in 𝜑𝑝. In Boiko’s experiment one can observe a block of particles in the middle. Just a 

block alone is not capable of producing a strong enough variance in particle velocity to 

form a “V”. The simulation in Figure 45 demonstrated no large differences in It or velocity. 

When a band a particles was used, as in Figure 53, more particles were spread out just 

behind the cloud. This is most obvious in Figure 53d and Figure 46d frame 2 where the left 

side of the block is evidently denser than the right. 
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 (a) Time = 0.0 (b) Time = 200 

 
 (c) Time = 400 (d) Time = 600 

 
 (e) Time = 800 (f) Time = 1000 

 

Figure 50: Shock-impacted particle laden flow simulation  

(1000 particles, Mach = 2.0, drag law based) 
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 (a) Time = 0.0 (b) Time = 200 

 
 (c) Time = 400 (d) Time = 600 

 
 (e) Time = 800 (f) Time = 1000 

 

Figure 51: Shock-impacted particle laden flow simulation  

(200 particles, Mach = 2.0, 𝜑𝑝 based ANN) 
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 (a) Time = 0.0 (b) Time = 300 

 
 (c) Time = 600 (d) Time = 900 

 
 (e) Time = 1200 (f) Time = 1500 

 

Figure 52: Shock-impacted particle laden flow simulation  

(1000 particles, Mach = 2.0, 𝜑𝑝 based ANN) 
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 (a) Time = 0.0 (b) Time = 150 

 
 (c) Time = 300 (d) Time = 450 

 
 (e) Time = 600 (f) Time = 750 

 

Figure 53: Shock-impacted particle laden flow simulation  

(1000 particles, Mach = 2.0, 𝜑𝑝 based ANN) 
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CHAPTER VIII:    

CONCLUSIONS AND RECCOMENDATIONS 

Conclusions 

The objective of this thesis was to efficiently model the interaction of a shock wave 

and a dusty gas. We wanted to accomplish this by formulating an algorithm to learn the 

behavior of meso-scale simulations. We successfully set up and used a feed-forward back 

propagation artificial neural network to learn the drag curves from single and multiple 

particle cases. For application to multiscale modeling, we chose important characteristics 

from the meso-scale simulations to be “lifted” in to a macro-scale simulation. The values 

of 𝐶𝑑𝑚𝑎𝑥
 and τr formulated a transient representation of It. The values of It learned using 

the ANN and had an average error of less than 0.5% in training and 2.0% in testing for 

single particles and less than 1.0% and 8.0% for multiple particles. The multiple particle 

cases provided more variance in the data of each particle separately than the variance of 

the ANN learning. The learned behaviors by the ANN were used in macro-scale 

simulations. The different macro-scale simulations demonstrated the great improvement of 

using an ANN and multiscale methods over traditional methods using predefined drag 

laws. 

Computational Savings 

The largest simulation that was performed for this thesis was that of a shock 

impacted 145 particle cloud. This simulation took a wall clock time of nearly 3 weeks on 

a serial processor and used 16 gigabytes of random access memory prior to stalling out 

near 30 non-dimensional units of time between 3 million and 4 million cells. To run a 

simulation with 1000 particles in a domain nearly 125 times larger it would take the same 



92 
 

 

machine, assuming limitless memory, roughly 50 years. The ANN learned behavior in the 

macro-scale simulation performed such a task in less than one minute. The data processed 

was 45 cases each lasting a few days but is capable of running in parallel. In either case, 

with the use of behavioral learning of ‘lifted’ meso-scale variables, much time was saved. 

Disregarding a lifting of single variables, the ANN could still learn the entirety of the drag 

curve for complicated scenarios if aided by multi-resolution analysis.  

Multi-Resolution Augmented ANN 

In the case where multi-resolution analysis was performed, there was a significant 

drop in error after the multi-resolution which can be explained by two reasons. The first 

reason is that the number of data points decreased, allowing the neural network to perform 

half the number of calculations as well as decrease the summation of errors over all the 

data points. The second reason is the softer gradient decent the back propagation algorithm 

was performed on a curve that does not have large slopes present. The most drastic 

improvement is time needed for all the iterations to reach a convergence point. 

Although the total number of iterations was kept the same, when and what to iterate 

the learning algorithm for the neural network to identify flow behavior was much more 

selective. The capturing of flow characteristics would be very difficult for a single artificial 

neural network. The MRAANN decomposed the drag curves to functions that could be 

learned very quickly and then to reconstruct the original drag curve. A single neural 

network assigning different sections to different partitions of hidden layers is allowed to 

grow. Each level of transformation doubles the number of iterations per level, but reduces 

the time to calculate the updating scheme.  
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Figure 54: Multi-Resolution Augmented Artificial Neural Network 

 

The theoretical number of calculations saved with the MRA approaches ½ as the number 

of transformed levels approached infinity.(97) This would reduce the number of iterations 

per level to less than one. The only way around this is to increase the number of iterations. 

However, because the error is also decreasing, to achieve the same overall accuracy, the 

MRAANN is able to perform a smaller number of iterations for the same accuracy. 

The segmentation of a neural network would greatly increase the accuracy, but 

there may not be a correlation learned in multiple dimensions. A single data point is learned 

easily, but it will not produce the ability to predict flow behavior. Although the MRA is 
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capable of reducing time and increasing accuracy, it is not capable of making predictions 

alone. The MRAANN still requires human interaction to determine the best set of variables 

to balance speed and accuracy.  A method to avoid this and increase speed further is to 

assign more neurons, segments, or iterations based upon the amount of noise present and 

the value of the detail coefficients. Overall, the implementation of a MRAANN in data 

processing and fluid modeling has already been shown to be promising.  However, due to 

the nature of multiscale modeling, the learning an ANN needs to undergo only has to 

contain data for characteristics that need to be lifted. For the most part, these characteristics, 

such as 𝐶𝑑𝑚𝑎𝑥
 and τr need only a simple learning algorithm. The use of multi-resolution 

analysis at this scale is deemed unnecessary. 

Recommendations and Future Work 

Future recommendations for work in this area mainly entail the proper selection, 

setup and lifting data of the training cases or the design of an ANN for more complex 

learning. One may directly place the neural network into a fluid code to aid shock impacted 

particle laden flow simulations carry out calculations for particle motion after the shock 

wave has passed over including particle collisions. For ANN improvement, many methods 

exist, such as the MRAANN or a new method coined by Ghaboussi et al. (98) as 

“autoprogressive training” 

Autoprogressive training 

In autoprogressive training, the ANN is training for global information as usual and 

from any type of testing or simulation procedure. The specific examples are then used to 

train the ANN and set the basis for learning. This base level of learning is very similar to 

the coarse level training in the MRAANN. However, the when the weights are ‘frozen’ in 
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autoprogressive training, they remain frozen while additional neuron are added and the 

next case is learned.(98) There are no duplicated weights, resolution refinement, or 

segmented data sets as in the MRAANN. In an autoprogressive trained artificial neural 

network, the hidden layers expand continuously and progressively as the dataset becomes 

more complicated. There should be minimal human intervention in the learning phase and 

expansion of the network. Further analysis phases which introduce more data can easily be 

updated and added without retraining the ANN for the whole data set. 

This work represents a first step in constructing a technique to couple scales 

together in  a multiscale framework. The main contribution of this thesis is to develop the 

capability to use an ANN  to “lift” information from detailed meso-scale calculations (or 

perhaps even from experiments if they are available). The macro-scale calculations access 

the lifted information by simply querying the ANN (a procedure that rapidly provides 

information to the macro-scale on fairly complicated behavior of the particles as the meso-

scale). The macro-scale calculations are then advanced further and information is accessed 

from the ANN at each step of the macro-calculation. This type of interaction between the 

micro- and macro-scale, effected by trained ANNs represents a first step in developing a 

true multiscale simulation capability, in which it may be necessary to perform meso-scale 

simulations in tandem with macro-scale simulations, in a “patch dynamics” and “gap-

tooth” framework.(19)(18) Then the ANN learning process will proceed alongside the 

querying process and the micro- and macro-calculations will need to be synchronized in 

some way. This rather elaborate setting for performing multiscale simulations will benefit 

from massively parallel computations on large processor clusters; the key issue then will 
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be to efficiently orchestrate the micro- and macro-computations along with model 

assimilation using ANNs.   These ideas are being pursued in ongoing work. 
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APPENDIX 

Averaged and Smoothed Case data 

 

Table 4: Data "lifted" from mulitple particle cases 

Mach 

𝜌𝑝

𝜌𝑓
 

𝜑𝑝 𝐶𝑑𝑚𝑎𝑥
 τr It 

 
Mach 

𝜌𝑝

𝜌𝑓
 

𝜑𝑝 𝐶𝑑𝑚𝑎𝑥
 τr It 

1.2 100 2.0 0.97 33.60 32.59  2.8 100 2.0 20.56 4.86 99.92 

1.2 100 8.0 0.82 30.10 24.68  2.8 100 8.0 23.55 2.53 59.58 

1.2 100 12.6 0.78 27.60 21.53  2.8 100 12.6 21.45 2.22 47.62 

1.2 310 22.4 0.70 25.34 17.74  2.8 100 22.4 14.30 2.08 29.74 

1.2 1000 2.0 0.88 30.10 26.49  2.8 310 8.0 19.44 5.51 107.11 

1.2 1000 8.0 0.82 27.70 22.71  2.8 1000 2.0 21.10 12.87 271.56 

1.2 1000 12.6 0.74 25.40 18.80  2.8 1000 8.0 23.60 9.53 224.91 

1.6 31 2.0 3.38 16.90 57.12  2.8 1000 12.6 21.50 7.12 153.08 

1.6 310 8.0 3.61 14.21 51.30  2.8 1000 22.4 14.14 5.21 73.67 

2.0 100 2.0 7.51 10.52 79.01  2.8 3100 8.0 19.47 7.35 143.10 

2.0 100 8.0 7.20 11.30 81.36  3.2 310 8.0 33.95 4.22 143.27 

2.0 100 12.6 6.75 10.90 73.58  3.2 310 22.4 23.76 2.76 65.58 

2.0 100 22.4 5.60 9.90 55.44  3.6 100 2.0 39.54 3.25 128.51 

2.0 310 12.6 7.79 11.96 93.17  3.6 100 8.0 46.27 1.62 74.96 

2.0 1000 2.0 7.55 12.63 95.36  3.6 100 12.6 41.42 1.46 60.47 

2.0 1000 8.0 6.19 10.42 64.50  3.6 1000 2.0 42.07 8.24 346.66 

2.0 1000 12.6 6.84 9.31 63.68  3.6 1000 8.0 46.24 6.41 296.40 

2.0 1000 22.4 6.30 8.26 52.04  3.6 1000 12.6 41.32 4.96 204.95 

2.4 100 8.0 15.05 3.48 52.37  4.0 100 22.4 41.84 1.26 52.72 

2.4 100 22.4 10.90 2.57 28.01  4.0 310 2.0 54.20 4.75 257.45 

2.4 310 2.0 13.40 6.12 82.01  4.0 1000 8.0 60.66 5.83 353.65 

2.8 31 8.0 19.50 1.55 30.23  4.4 1000 8.0 70.30 4.68 329.00 
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MatLab Pseudo Code: Artificial neural network training 
 

%% Defined Constants 

number_of_iterations = 500  ; %keep less than 5000 

number_of_neurons    = 5    ; %keep less than 50, or NaN error 

output_learning_rate = .02  ; %should be less than .03 or really 'jumpy' 

input_learning_rate  = .5   ; %should be less than .5 

acceptable_error     = .0001; %convergance error 

  

%% Data Input and Standardization 

bias = ones(size(aquila_training,1),1); 

training_input = [AQUILA_AIRFOIL(1) bias]; 

average_input = mean(training_input); 

stdev_input = std(training_input); 

training_input = (training_input(:,:)-average_input(:,1))/stdev_input(:,1); 

 

%% Data Target and Standardization 

training_target = AQUILA_AIRFOIL(2); 

average_output = mean(training_target); 

stdev_output = std(training_target); 

training_target = (training_target(:,:)-average_output(:,1))/stdev_output(:,1); 

training_target = training_target'; 

  

%% Allocating Weights and Error Array 

inputs = size(training_input,2); % num of weights is twice num of neurons 

input_weight = randn(inputs,number_of_neurons)/10; % small weights 

output_weight = randn(1,number_of_neurons)/10; 

error_plot = zeros(1, number_of_iterations);  

  

%% MAIN LOOP: ANN Algorithim 

for i = 1:number_of_iterations 

  

    % secondary loop to evaluate each input/output set 

    for j = 1:size(training_input,1)  

         

        n = ceil(rand*size(training_input,1)); 

     

        % sigmoid activation function with derivitive = (1-tanh^2) 

        activation_function = (tanh(training_input(n,:)*input_weight))';  

     

        % Backpropagation: 

        prediction = activation_function'*output_weight'; 

        error = prediction-training_target(n,1); 

        delta_output = error.*output_learning_rate.*activation_function; 

        output_weight = output_weight-delta_output'; 

        delta_input= input_learning_rate.*error.*output_weight'.*(1-

(activation_function.^2))*training_input(n,:); % d/dx tanh 

        input_weight = input_weight - delta_input'; 

    end 

  

    % Visual Output 

    prediction = output_weight*tanh(training_input*input_weight)';  

    final_error = prediction'-training_target; 

    error_plot(i) = (sum(final_error.^2))^0.5; 

    figure(1); plot(error_plot) 

     

    % Converged Solution     

    if error_plot(i) < acceptable_error 

        fprintf('converged after %d iterations.\n',i); 

        IN_WT = input_weight; 

        OUT_WT = output_weight; 

        break 

    end 

end 
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MatLab Pseudo Code: Multi-Resolution Augmented ANN 
 

%% Starting on this level, going down 

[Training_Data ,Target_Data, startvalue] = MULTI-RESOLUTION_ANALYSIS(Data); 

starting_level = size(outputs,2);  

Levels_To_Learn = size(outputs,2); 

  

%% MAIN LOOP 

for level = 0:Levels_To_Learn-1  

 

    for i = 1:2^level 

         

        if level == 0 % Initializes Weights 

            number_of_inputs = size(inputs,2)+1; % plus bias 

            input_weight = randn(number_of_inputs,number_of_neurons)/10; % small weights 

            output_weight = randn(1,number_of_neurons)/10; 

 

        else % Extracts and Segments Data from MRA 

            seg = (max(Training_Data (:,1))-min(Training_Data (:,1)))/(2^level); 

            clear inputs outputs 

            cnt = 0; 

            section(1) = (seg*(i-1)+min(Training_Data (:,1))); 

            section(2) = (seg*(i  )+min(Training_Data (:,1))); 

 

            for j = 1:length(Training_Data) 

                if (seg*(i-1)+min(Training_Data (:,1))) < Training_Data (j)      && 

                                  Training_Data (j) < (seg*(i)+min(Training_Data (:,1))) 

                    cnt = cnt+1; 

                    inputs(cnt,1) = Training_Data (j,1); 

                    inputs(cnt,2) = Training_Data (j,2); 

                    outputs(cnt,1) = Target_Data (j,starting_level-level); 

                end 

            end 

            clear input_weight output_weight 

 

            for j = 1:number_of_neurons 

                input_weight(:,j)  = new_inwt(:,number_of_neurons*(i-1)+j); 

                output_weight(1,j) = new_outwt(1,number_of_neurons*(i-1)+j); 

            end 

        end 

         

        [final, IN_WT, OUT_WT] = ARTIFICIAL_NEURAL_NETWORK(inputs, outputs,   & 

                                 input_weight, output_weight, iterations); 

         

        if level == 0 % Allocates Arrays 

            ALL_inwts  = zeros(2,number_of_neurons); 

            ALL_outwts = zeros(1,number_of_neurons); 

            new_inwt  = zeros(2,number_of_neurons); 

            new_outwt = zeros(1,number_of_neurons); 

        end 

 

        for j = 1:number_of_neurons % Appends Weights 

            ALL_inwts(:,number_of_neurons*(i-1)+j)  = IN_WT(:,j); 

            ALL_outwts(1,number_of_neurons*(i-1)+j) = OUT_WT(1,j); 

        End 

 

        for i = 1:size(ALL_inwts,2) % Expands Weights 

            for j=1:number_of_inputs 

                new_inwt(j, 2*i-1) = ALL_inwts(j, i); 

                new_inwt(j, 2*i) = randn()/10; 

            end 

            new_outwt(1,2*i-1) = ALL_outwts(1, i); 

            new_outwt(1,2*i) = randn()/10; 

        end 

    end 

end 
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 MatLab Pseudo Code: ANN based shock impacted particle advection 
 

%% Defined Constants 

NP    = 1000; % Number of Particles 

xsize = 1024; 

ysize = 512 ; 

denr  = 1000;  

time  = 0.0 ; 

step  = 0.1 ; % Step Size 

endt  = 1001; % End Time 

Mach  = 2.0 ; 

 

%% Allocating Arrays 

cen = zeros(2,NP); % X and Y Particle Center 

vel = zeros(2,NP); % X and Y Particle Velocity 

acc = zeros(2,NP); % X and Y Particle Acceleration 

phi = zeros(NP  ); % Volume Fraction 

max = zeros(NP  ); % ANN Max Force Prediction 

tau = zeros(NP  ); % ANN Relaxation Time Prediction 

lvlset = zeros(xsize, ysize); % Level Set Field 

volfrc = zeros(xsize, ysize); % Volume Fraction Field 

 

%% Seeding and Initializing Level Set Field 

for i = 1:NP 

    cen(1, i) = int( randn()*(ysize)+ysize/2) ); % x 

    cen(2, i) = int( randn()*(ysize)+ysize/2) ); % y 

    for x = -1:1 

        for y = -1:1 

            lvlset( cen(1,i)+x , cen(2,i)+y ) = 1; 

        end 

    end 

end 

 

%% Calculates Local Volume Fraction Field 

for i = 1:xsize 

    for j = 1:ysize 

        volfrc(i,j) = sum(lvlset( i-30:i+30 , j-30:j+30 ))/(60^2); 

    end 

end 

  

%% Sets Volume Fraction to Particle 

for i = 1:NP 

    phi(i) = volfrac( cen(1,i) , cen(2,i) ); 

end 

 

tau(i) = ARTIFICIAL_NEURAL_NETWORK_TAU(Mach, denr, phi(i), time); % Already Trained ANN 

max(i) = ARTIFICIAL_NEURAL_NETWORK_MAX(Mach, denr, phi(i), time); 

 

%% Main Loop: ADVECTION SCHEME 

while time < endtime 

     

    for i = 1 : NP 

        %   frc(1, i) = MRA_ANN(Mach, phi(i), time) % without lifting 

        frc(1, i) = max(i)*exp(-time/tau(i));  

        frc(2, i) = max(i)*exp(-time/tau(i))*rand(.1); 

        acc(1,i) = frc(1,i) / mass; % mass = denr * den_f * vol 

        acc(2,i) = frc(2,i) / mass; 

        vel(1,i) = vel(1,i) + acc(1,i) * step; 

        vel(2,i) = vel(2,i) + acc(2,i) * step; 

        cen(1,i) = cen(1,i) + vel(1,i) * step; 

        cen(2,i) = cen(2,i) + vel(2,i) * step; 

    end 

 

    time = time + step; 

 

    if (mod(time, 10) == 0) 

        LEVELSET_IMAGE_PROCESS(cen, lvlset); 

    end 

end 


