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ABSTRACT 

The calibration or validation of a hydrological model is critical in the process of calculating 

design flows. The consequence of underestimating parameters during the validation process 

can result in an underrating of the flood risk, and thereby the negative impact on 

infrastructure costs, insurances, population at risk and other indirect effects. 

There is no universally recognised best practise or definitive standard for hydrological 

modelling because each calibration is unique and carries its own challenges and limitations. 

This means that the hydrologist is required to exercise significant judgement with regard to 

the selection of an approach and the parameters for the estimation process. 

To mitigate the impact of this subjective bias, WMS has developed a machine learning 

algorithm with an ensembled approach that groups favourable parameter values and thereby 

identify and disqualify outliers. This paper describes the results of a pilot study that was 

conducted on five (5) large catchments in Queensland with the aim of varying the quality of 

the recorded data to test the efficiency of the machine learning algorithm. 

The initial results are positive when they are benchmarked against a performance criterion 

developed by WMS, which is based on Nash–Sutcliffe efficiency coefficient (Nash, J. E.; 

Sutcliffe, J. V. 1970), Kling-Gupta efficiency coefficient (Gupta et al. 2009) and others. The 

results of this study further emphasise the importance of including base flow, spatially 

varying rainfall, consideration for hyetograph shape and volume-duration in the calibration 

process. 
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INTRODUCTION 

Hydrological modelling is stochastic in nature. When calibrating a model this behaviour becomes 
more apparent as the uncertainty and scale of the inputs increases. Inputs during the calibration 

process that influence this uncertainty generally include the following: 

• The catchment delineation; 

• Rainfall hyetographs and spatial distribution in the catchment; 

• Loss model; 

• Baseflow or baseflow separation; 

• Accuracy of the stream gauge; 

• Catchment characteristics; and 

• Modellers bias in the calibration process 

The objective of this paper is to develop a methodology that can help to reduce modellers’ bias using 

machine learning (ML). The ML algorithm is itself based on a set of assumptions which may be 
regarded as identified biases (see methodology) which the author of this paper has attempted to reduce 

by introducing a broad performance criterion. 

Similarly to hydrology, market algorithmic trading (algo-trading) is highly stochastic, where 
predicting the change in behaviour over time is hard to capture with any degree of certainty. A 

popular ML technique (ensemble-learning) in the algo-trading community was adopted for this study.  

The results presented in this paper have been developed with sole dependence on the use of ML and 
minimal modellers judgement. The author does not endorse the use of any results presented for the 

gauges used in this paper. 

METHODOLOGY 

Five catchments were selected in Queensland with varying catchment characteristics, size of areas and 
quality of data. They were selected with the following criteria: 

• Stream and rainfall gauges in close proximity with data available publicly; 

• Extensive stream and rainfall overlapping data; and 

• Varying total areas across the five catchments 

Catchments were generated, delineated into sub-catchments, reaches and nodes using CatchmentSim 

(CSSE 2021) with SRTM-H data (Geoscience Australia 2006).  

The event based hydrological model RORB was chosen given the simplicity of input parameters 

compared to other models. Assuming a fixed rainfall, unregulated catchment (no water storage 

structures) and an m value of 0.8, a RORB model can be calibrated varying three constants. These are 
initial loss (IL), continuing loss (CL) and a fixed routing parameter (Kc). 

Where possible, baseflow was separated from stream hydrographs to improve the machine learning 

performance. Generally this was only done when the ML algorithm couldn’t achieve a calibration 

(refer to Estimate of Kc and CL values). 

Rainfall was only spatially varied for the largest catchment of the five (136301B), this was to test the 

ML algorithm performance with a higher quality of data for a large catchment. 

Rainfall was not manipulated in any way except for gauge 136301B where it was spatially distributed. 
No interpretation of rainfall was made to remove pre or post storm bursts, rather the ML algorithm 

was left to select an IL that would allow for a best fit to various performance criterions. Due to this 

approach taken, no ILs described in this paper would be suitable for their catchments design 

hydrology.  



 

 

A multi-layer perceptron regressor (MLP-R) neural network solver was used with the python module 

scikit-learn (Figure 1), MLP-R is a method of supervised learning where a function is developed by 
training on a dataset. The training datasets used were generated by running each hydrological model 

for a sequence of random inputs and compiling them with the resulting hydrographs.  

A suite of performance criterions was incorporated into the MLP-R to compare the modelled (also 

referred to as testing) hydrographs to the recorded stream gauges. These were: 

• Nash–Sutcliffe (NSE) efficiency coefficient (Nash, J. E.; Sutcliffe, J. V. 1970). Used for 
comparison of hydrograph and volume-duration timeseries data; 

• Kling-Gupta (KGE) efficiency coefficient (Gupta et al. 2009). Used for comparison of 

hydrograph and volume-duration timeseries data; 

• Pearson correlation coefficient. Used for comparison of volume-duration timeseries data; and 

• Percentage difference in hydrograph peak flow. 

An ensemble of the MLP-R network was developed with a randomised range of IL, CL and Kc inputs 
per network. Testing results for each network were grouped and benchmarked with the performance 

criterions. Outliers removed where applicable. An example of a testing result to one of the trained 

simulations for this paper is shown in Figure 2. 

This process was repeated (iterated) until a range of inputs that perform well against the performance 

criterions was achieved. If the performance criterions could not be achieved the ML algorithm 

eventually failed. A visual workflow of the process is shown in Figure 3. 

 

Figure 1. One Hidden Layer MLP (scikit-learn, 2021) 

 

 

Figure 2. RORB ML Algorithm Tested Result 



 

 

 

Figure 3. Ensembled-learning Process 

PILOT GAUGES 

Stream gauges were selected in Queensland as part of this pilot study. The total contributing 

catchment area of these gauges varied between 35 to 500 km2. A summary of the selected gauges is 

shown in Table 1. 

Kc values traditionally derived for uncalibrated catchments in Queensland are also shown in Table 1. 

These values are from the default RORB equation, Weeks (1986) and Aus Wide Dyer (1994; Pearse 

et al., 2002). The continuing loss (CL) at each gauge was also extracted from Datahub (Babister et al, 

2016) as a reference before the ML calibration. 

For gauge 125006A, pluviograph 1250P002 was selected due to its proximity to the catchment 

centroid. Gauges 125009A, 126003A and 141009A had pluviograph data at the stream gauge 

locations, these were used due to overlapping historical periods. One of these gauges and its 
contributing catchment is shown in Figure 4. 

Gauge 136301B didn’t have a pluviograph of sufficient quality within the catchment. Due to the 

catchment size many hourly and daily pluviographs were used with a spatial distribution applied to 
better estimate rainfall depths across the catchment. This gauge and its contributing catchment is 

shown in Figure 5. 

Table 1. Pilot gauges and typical parameters 

Gauge 
Area 

(km
2
) 

Average flow 

distance (km) 

Kc 

(Default) 

Kc (QLD,  

Weeks) 

Kc (Aus 

Wide Dyer) 

CL 

(Datahub) 

141009A 43.0 6.55 14.42 6.46 7.47 2.6 

125006A 35.4 3.64 13.10 5.83 4.15 5.2 

125009A 192.3 10.97 31.51 14.29 12.5 5.2 

126003A 83.6 8.33 20.11 9.19 9.49 2.4 

136301B 494.5 28.41 48.92 23.57 32.39 1.5 

 



 

 

 

Figure 4. Gauge 141009A Catchment Extents 

 

Figure 5. Gauge 136301B Catchment Extents 



 

 

ESTIMATE OF KC AND CL VALUES 

Where data of sufficient quality existed, the five rarest flood events from each gauge were extracted 
and run through the ensemble-learning process. Results are summarised in Table 2 to Table 6 with 

commentary on the findings.  

Model outputs of the final iteration of each event with plots of the each resulting performance 

criterion is shown throughout this section.  For the performance criterion plots, “model convergence” 
describes the final iteration where the best fit was achieved for the given event. 

Table 2. 141009A - Ensemble-learning model results 

Event Kc Range CL Range Commentary 

Feb 2012 20.1 – 22.1 1.8 – 2.6 Good fit to hydrograph and volume shape was achieved, 

difference in time to peak is likely due to the pluviograph not 
capturing the catchment average hyetograph accurately. 

Jan 2013 19.7 – 21.5 4.2 – 4.9 Close to perfect fit when benchmarked to the performance 

criterion. 

Feb 1999 25.2 – 25.2 3.6 – 3.6 Visual observation suggests insufficient volume from the 
pluviograph impacting results. 

Mar 1997  24.3 – 25.8 5.6 – 6.4 Good fit to hydrograph and volume shape was achieved, 

difference hydrograph shape is likely  due to the pluviograph not 

capturing the catchment average hyetograph shape accurately. 

Apr 2009 15.1 – 16.0 2.5 – 3.5 Visual observation suggests insufficient volume at the start and 
end of the hydrograph, possible reasons are either from 

insufficient pluviograph volume or baseflow impacting results. 

 

Figure 6. 141009A – Feb 2012 Calibration Results 

 

Figure 7. 141009A – Jan 2013 Calibration Results 



 

 

 

Figure 8. 141009A – Feb 1999 Calibration Results 

 

 

Figure 9. 141009A – Mar 1997 Calibration Results 

 

 

Figure 10. 141009A – Apr 2009 Calibration Results 

 
 

 



 

 

Table 3. 125006A - Ensemble-learning model results 

Event Kc Range CL Range Commentary 

Feb 2000 7.0 – 7.6 1.0 – 1.4 Good fit to volume-duration was observed. Hydrograph shape 

suggests the catchment average hyetograph was not captured 

accurately. 

Jan 2007 7.0 – 7.6 3.8 – 5.3 Notable difference in peak flows. This is likely an over 

correction from the model due to inaccurate hyetographic 

information or influence from baseflow. 

Aug 1998 6.3 – 6.8 4.0 – 5.4 Poor calibration when compared to the resulting performance 
criterion. Likely due to storm volume, hyetograph shape and/or 

baseflow. 

Jan 2008 7.3 – 7.8 4.8 – 6.0 A good fit to hydrograph shape and volume-duration was 

achieved. NSE and KGE suggests a poor fit, likely due to a time 
lag between the pluviograph and gauge that wasn’t captured. 

Mar 2017 - - ML algorithm failed during calibration 

 

Figure 11. 125006A - Feb 2000 Calibration Results 

 

 

Figure 12. 125006A - Jan 2007 Calibration Results 



 

 

 

Figure 13. 125006A - Aug 1998 Calibration Results 

 

 

Figure 14. 125006A - Jan 2008 Calibration Results 

 

 

Table 4. 125009A - Ensemble-learning model results 

Event Kc Range CL Range Commentary 

Jan 2019 24.1 – 26.2 1.8 – 2.5 Good fit to hydrograph shape and volume-duration. Poor 

calibration when compared to the resulting performance 

criterion. Likely due to storm volume, hyetograph shape and/or 
baseflow. 

Mar 2017 24.0 – 26.0 2.7 – 3.7 Poor calibration when compared to the resulting performance 

criterion. Likely due to storm volume, hyetograph shape and/or 

baseflow. 

Mar 2016 24.0 – 25.9 3.0 – 4.0 Similar to Mar 2017 event 

Apr 2018 22.2 – 23.9 2.9 – 3.2 Good fit to hydrograph shape and volume-duration was 

achieved. Time lag between the pluviograph and gauge was 

observed that wasn’t captured. 

Jan 2021  21.1 – 21.7 2.1 – 2.2 Good fit to hydrograph shape and volume-duration. Difference 

in peak shape likely due to the pluviograph not capturing the 

catchment average hyetograph shape accurately 

 



 

 

 

 

Figure 15. 125009A – Jan 2019 Calibration Results 

 

 

Figure 16. 125009A –Mar 2017 Calibration Results 

 

 

Figure 17. 125009A – Mar 2016 Calibration Results 



 

 

 

Figure 18. 125009A – Apr 2018 Calibration Results 

 

 

Figure 19. 125009A – Jan 2021 Calibration Results 

 

 

Table 5. 126003A - Ensemble-learning model results 

Event Kc Range CL Range Commentary 

Mar 2017 9.8 – 10.4 1.9 – 2.6 ML algorithm was fixed to 30 hrs of simulation time to prevent 

failure. Good fit to hydrograph and volume-duration suggests the 

failure is likely due to base flow. 

Feb 2008 6.1 – 6.6 1.9 – 2.8 Good observed fit to hydrograph shape and volume-duration. A 

poor performance criterion result and lost volume over time 

suggests the need to consider baseflow. 

Jan 2013 9.2 – 10.1 1.5 – 2.2 Poor calibration when compared to the resulting performance 
criterion. Likely due to storm volume, hyetograph shape and/or 

baseflow. 

Jan 2010 5.4 – 5.9 1.5 – 2.1 A good observed fit to hydrograph shape and volume-duration. 

A poor performance criterion result and lost volume over time 
suggests the need to consider baseflow. 

Mar 2012 - - ML algorithm failed during calibration 

 



 

 

 

Figure 20. 126003A – Mar 2017 Calibration Results 

 

 

Figure 21. 126003A – Feb 2008 Calibration Results 

 

 

Figure 22. 126003A – Jan 2013 Calibration Results 



 

 

 

Figure 23. 126003A – Jan 2010 Calibration Results 

 

 

Table 6. 136301B - Ensemble-learning model results 

Event Kc Range CL Range Commentary 

Dec 2010 53.2 – 57.8 2.3 – 2.7 Good fit to volume-duration was observed. Hydrograph shape 
suggests the catchment average hyetograph was not captured 

accurately. 

Jan 2013 47.8 – 52.6 2.2 – 2.9 Close to perfect fit when benchmarked to the performance 

criterion. Difference in shape towards the hydrograph peak is 
likely due to hyetograph shape. 

Jan 2011 32.2 – 34.4 1.7 – 2.4 Insufficient volume at the tail end of the hydrograph and 

volume-duration plot, suggests the need to consider baseflow or 

insufficient hyetograph volume. 

- - - Insufficient overlap of pluviograph and gauge records 

 

 

Figure 24. 136301B –Dec 2010 Calibration Results 



 

 

 

Figure 25. 136301B –Jan 2013 Calibration Results 

 

 

Figure 26. 136301B –Jan 2011 Calibration Results 

 



 

 

CONCLUSIONS AND OBSERVATIONS 

The ensembled MLP-R ML approach as use in this study was found to perform well when used to 
estimate RORB input parameters with the following observations: 

• Sufficient volume in the model from the storm hyetographs was critical to produce a reliable 

calibration. Volume-duration should be considered in conjunction with hydrograph shape; 

• The hyetograph shape needs to adequately reflected the behaviour of the storm across the 

catchment (this is particularly observed in the largest catchment (136301B with an area of 500 

km2) where a very good calibration was achieved against the performance criterion; 

• In applying spatially varying rainfall, 136301B had better calibrations compared to smaller 
catchments with single pluviograph rainfall. This reinforces the importance of spatially varying 

rainfall for larger catchments; 

• Where baseflow was observed for calibration events, the machine learning model struggled to 

converge to a range of parameters or failed in the calibration. This suggests the need for a 
hydrological model that can also model baseflow when baseflow is observed; 

The use of RORB when compared with other hydrological software packages was useful in 

simplifying the machine learning approach and observing the impacts of input uncertainty in the 
model calibration. This study recommends that further work be conducted with more complex 

hydrological software packages to further reduce modelling variables and thereby the associated 

problem of bias and consequently the risk of underestimation of flood damage.  
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