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Kia ora koutou – Greetings dear Delegate 
for the 14th IMWA Congress,

“Welcome to IMWA 2020 New Zealand!”, that’s how we intended to greet you in Christchurch, 
the largest city on the South Island of New Zealand. We’re sure many of you had planned an 
itinerary before or after IMWA 2020 to explore our islands and make the most of your time 
in our remote part of the globe. Sadly, we had to inform our delegates that IMWA 2020 in 
New Zealand has been postponed in response to disruption by the COVID-19 pandemic on 
global travel and economic conditions. This was a difficult decision several months ago as 
the trajectory of the COVID-19 pandemic was less clear than now, but the right decision was 
made. The New Zealand based Organizing Committee has agreed with the IMWA Executive 
Committee that another IMWA Conference in New Zealand at a similar time of year and with 
similar offerings of short courses, field trips and keynote speakers will happen. We hope that 
the delay, though frustrating, only builds your anticipation and desire to visit New Zealand 
and participate in IMWA 2022 in Christchurch.

We discussed holding IMWA 2020 online but withdrew from this type of format, because 
all of us had negative experience with online meetings, and IMWA is a truly international 
organisation with delegates in every time zone around the globe. We are almost a year into the 
Pandemic, and electronic ways to communicate and hold online meetings have substantially 
improved, but we still think that the IMWA family is only a family when we can see and chat 
with each other face to face. Presentations online are a useful tool, but simply don’t replace 
live speakers’ attentive audiences, insightful questions, or subsequent discussions over coffee, 
food or great beer and wine. So, we believe we made the correct decision.

All of us were looking forward to a fantastic IMWA Congress in New Zealand this year. 
223 abstracts were accepted for presentation, and 40 of them are now published in these 
proceedings. They cover the full range of mine water related topics by experts from all around 
the world. Though you can’t listen to the presentations, we hope that you still can enjoy 
reading the related papers. Especially because of these unintended changes, the authors did a 
great job to compile and write their papers for these proceedings. It shows us that a Pandemic 
like that can interrupt face to face communication, but it can’t beat our enthusiasm for mine 
water and our international friendship. 

We want to thank all our reviewers from the International Scientific Committee (ISC), the 
people behind the scenes who partially organised IMWA 2020, and our collaborators and 
sponsors. It was fantastic to work together with you to share a vision and we look forward to 
working together again to deliver IMWA 2022.

Stay tuned, dear friends all around the world, and let’s work on IMWA 2021 in Wales and 
IMWA 2022 in New Zealand. Let’s keep in contact through e-mail and social media and online 
meetings. And let’s look positively into the future. There will be a time when the Pandemic is 
over, we will have a vaccine and we will be able to see each other again. 

Keep healthy and with the German miner’s greeting “Glückauf ” we are wishing you all  
the best!

Christian Wolkersdorfer – IMWA President

James Pope – IMWA 2020 Chair
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Abstract
Hydrologic design criteria for mine closure landforms in riverine environments 
commonly specify that landforms need to be stable under extreme, single hydrologic 
events such as the probable maximum precipitation or probable maximum flood. 
The cumulative geomorphic effects of multiple, more frequent, and lower magnitude 
hydrologic events may well exceed that of a single, extreme event. In addition, failure of 
a closure landform in the riverine environment may be dictated by non-fluvial factors 
such as settlement, cracking, piping or mass failure of emplaced fill or pit walls. Factors 
other than extreme hydrologic events need to be considered in mine closure planning.
Keywords: mine closure, design criteria, hydrology, geomorphology

Introduction
Rehabilitation of creek and river corridors 
remains, arguably, the most challenging 
aspect of mine closure in the Pilbara region 
of Western Australia. This is particularly the 
case where Channel Iron Deposits (CID) 
in Tertiary-age paleochannels are open 
pit-mined in spatially coincident modern 
drainages and the ratio of waste material to 
extracted ore is very low and thus pit backfill 
is an on-going challenge.

Closure in the riverine environment can 
encompass re-establishment of drainage 
features over fully backfilled pits, partial pit 
backfill with land bridges to convey sediment 
and flows, and total or partial hydrologic 
disconnection between partially-filled 
open pits and the channel system. Typical 
closure scenarios for non-backfilled pits are 
illustrated in Figure 1 (Price 2018).

In general, fluvial processes in the 
Pilbara tend to be driven by infrequent, 
high intensity and short duration hydrologic 
events that are related to the occurrence 
of Tropical Cyclones (Harvey et al. 2014, 
Rouillard et al. 2015, Rouillard et al. 2016). 
Climate change projections suggest that it is 
likely that intense rainfall in most locations 

in Australia, including the Pilbara, will 
become more extreme, driven by a warmer, 
wetter atmosphere (Department of Industry 
Innovation and Science 2016).

Regulatory Guidance for Design of 
Closure Landforms in Australian 
Riverine Environments
Mine closure guidelines in Western Australia 
include language requiring post-closure 
landforms to be physically safe, geotechnically 
stable, geochemically non-polluting and 
sustainable in the long term (Western 
Australian Department of Mines and 
Petroleum 2015) which is in accordance with 
the hierarchy of closure needs identified by the 
Asia-Pacific Economic Cooperation Mining 
Task Force (APEC Mining Task Force 2018).

The Australian National Council on Large 
Dams (ANCOLD) defines long term as 1,000 
years (ANCOLD 2019) which significantly 
exceeds the limits of engineering practice, 
which is generally considered to be between 
100 and 200 years, and also exceeds the 
duration of most human institutions that 
would monitor and regulate the post-closure 
landscape (APEC Mining Task Force 2018). 
Leading practice in Australia dictates that 
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a post-closure design life of 1,000 years be 
adopted as being considered ‘in perpetuity’ 
(Department of Industry Innovation and 
Science 2016).

Guidance from Western Australian 
regulatory agencies on hydrologic design 
criteria for closure landforms in the riverine 
environment is either not clear (300 years or 
longer for landforms, voids and ecosystems 
to 500-1,000 years for pit lake modelling) or 
recommends that landforms are constructed 
to be stable under single extreme events 
such as the probable maximum precipitation 
(PMP) or the probable maximum flood 
(PMF). While extreme events such as the 
PMP, or the resulting PMF, may be attractive 
from a perceived regulatory risk reduction 
perspective, the very low probability of 
occurrence of such an extreme single design 
event means that fluvial processes, and hence 
the dynamics of the closure corridor, will be 
governed by multiple events with a much 
higher probability of occurrence. In addition, 
while a structure may provide a design level 
of protection when built, subsequent changes 

in the river environment such as aggradation 
may lead to conditions in the future where 
the design level of protection is not provided.

Probability of Extreme Hydrologic 
Events
Probable Maximum Precipitation
The probable maximum precipitation is 
defined as the “theoretically greatest depth 
of precipitation for a given duration that is 
physically possible over a given size storm 
area at a particular geographical location at a 
certain time of the year” (Hansen et al. 1982). 
Prior to the 1950s, the concept was known 
as the maximum possible precipitation 
(MPP). The name was changed to the PMP 
reflecting the uncertainty surrounding any 
estimate of maximum precipitation (Wang 
1984). There is no known way to develop the 
PMP from first principles (National Research 
Council 1994) and proposed estimation 
methodologies have been the subject of much 
debate. By another definition, the PMP is 
the estimated precipitation depth for a given 

Figure 1 Typical closure scenarios with permanent diversions and a levee for a non-backfilled pit  
(Price 2018).
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duration, drainage area, and time of year for 
which there is virtually no risk of it being 
exceeded (Wang 1984). However, the fact that 
measured rainfall depths have exceeded PMP 
estimates in the past clearly indicates that the 
PMP approach by no means implies zero risk 
in reality (Koutsoyiannis 1999).

The PMP estimation methodology makes 
the inherent assumption that the past climate 
will be representative of future conditions. As 
global climate patterns continue to change, 
PMP estimates from previous analyses 
may need to be updated. The Mine Closure 
Checklist for Governments (APEC Mining 
Task Force 2018) describes some of the 
challenges associated with climate change 
and mine closure, including changing rainfall 
patterns, drier climates, rising temperatures, 
and rising sea levels. Changing rainfall 
patterns may quite possibly have the greatest 
impact as areas have more intense and/or 
more frequent rainfall events or even more 
prolonged periods of dry weather than in 
previous years (IPCC 2007).

Probable Maximum Flood
The probable maximum flood (PMF) is 
defined as “the largest flood that could 
conceivably occur at a particular location, 
usually estimated from the PMP coupled 
with the worst flood-producing catchment 
conditions” (Douglas and Barros 2003). 
The temporal and spatial patterns of the 
predicted PMP rainfall depths, antecedent 
soil conditions, and precipitation losses will 
all impact the estimate of the PMF. Use of 
the PMP to generate the PMF has become 
the standard for dam design in many parts 
of the world including the United States, 
China, India, and Australia (Svensson and 
Rakhecha 1998). Estimates of the annual 
exceedance probability (AEP) of the PMF 
range from 1 in 10,000 to 1 in 1,000,000 in 
Canada (Smith 1988) to 1 in 1,000,000 in the 
eastern USA (Shalaby 1994). However, there 
is considerable uncertainty in estimating 
both the PMP and PMF (Salas et al. 2014).

Guidance in Australia (Nathan and 
Weinmann 2019) states that the absolute 
upper limit of flood magnitude under 
consideration is the probable maximum 
flood, which is a design concept that cannot 

be readily assigned an annual exceedance 
probability. However, the AEP of the PMP is 
considered to vary from 1 in 10,000 to 1 in 
10,000,000. The stability of hydraulic features 
that are included in mine closure plans may 
be undermined by morphological changes 
that occur as a result of more frequent events 
with a higher likelihood of occurrence. Given 
the extremely low probability of occurrence 
of the PMP/PMF, designing for it is not 
pragmatic if the features cannot withstand the 
impacts of a series of more frequent events.

Fluvial Processes and Geomorphic 
Change
In general, fluvial processes in the Pilbara, 
located in the arid subtropics, tend to be 
driven by infrequent, high intensity and short 
duration hydrologic events that are related to 
the occurrence of Tropical Cyclones (Harvey 
et al. 2014). The morphology of the alluvial 
sections of the ephemeral-flow, gravel-bed 
creeks where sediment transport is episodic, 
tends to be a relic of the last major flow 
event and results in highly variable channel 
morphology over both space and time (Graf 
1988). Graf (1988) concluded that in arid 
and semi-arid regions where the flows are 
ephemeral, infrequent and relatively short-
duration hydrological events rarer than the 
1 in 100 AEP are the major determinants 
of overall valley floor morphology, but 
more frequent events are responsible for 
defining highly variable channels (macro-
channels) within the disturbed landscape. 
Macro-channel morphology (compound 
channels) is associated with regions of high 
hydrological variability (Croke et al. 2013). 
Macro-channels are characterised by a small 
inner channel and associated benches set 
within a much larger channel that operates as 
a conduit for high magnitude floods (Croke et 
al. 2016). They have large channel capacities, 
with bankfull capacities approaching a 1 in 
50 AEP, and are laterally stable even during 
extreme flood events because of the presence 
of highly erosion-resistant clays (Fryirs et al. 
2015) or calcrete and ferricrete-cemented 
alluvium in their banks (Harvey et al. 2014).

Tooth and Nanson (2004) demonstrated 
the high variance of morphologic, hydraulic 
and sediment transport characteristics over 
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relatively short distances in ephemeral flow 
channels in central Australia and because of 
this high morphologic variability, it is very 
difficult to define either channel-forming 
discharges (Wolman and Miller 1960, Baker 
1978, Wolman and Gerson 1978) or design 
discharges (Harvey and Mussetter 2005). 
Consequently, channel dimensions within 
the ephemeral flow channels are unlikely 
to be related to hydrologic events of any 
particular recurrence interval, and as such, 
existing channel morphology provides a 
very poor template for post-mining channel 
reconstruction in the Pilbara (Harvey et al. 
2014).

International Approaches to 
Engineering Design and Long-Term 
Landform Stability
With the exception of tailings dam design 
where PMP/PMF criteria are prescribed 
(ICOLD 2013, Slingerland et al. 2018), the 
international literature on mine closure 
generally addresses regulatory goals for 
reclamation/closure/relinquishment rather 
than specific hydrologic design criteria. 
For example, the extensive South African 
Guidelines for the Rehabilitation of Mined 
Lands (Chamber of Mines of South Africa 
and CoalTech 2007) does not specify any 
hydrologic criteria but rather focusses 
on achieving post-mining landscape 
rehabilitation and acceptable future land use.

The U.S. Surface Mining Control and 
Reclamation Act (SMCRA) of 1977 aims to 
avoid disturbance of alluvial valley floors 
and their attendant hydrologic balance (both 
surface water and groundwater). If stream 
diversions are required, they must convey 
the peak runoff from the 1 in 100 AEP, 
6-hour precipitation event. There is also an 
expectation that “good engineering practice” 
will be employed in design of the diversion 
structures (Office of Surface Mining and 
Reclamation and Enforcement 1977).

To accommodate the dichotomy of 
constructing landforms that are stable over 
the long-term and the limits of engineering 
practice, the U.S. Uranium Mill Tailings 
Radiation Control Act (UMTRCA) of 1978 
requires closure measures to be effective for 
up to 1,000 years to the extent reasonably 

achievable and, in any case for at least 200 
years (Nuclear Regulatory Commission 
1978; APEC Mining Task Force 2018) even 
though they fall short of the full duration of 
the hazard (Nuclear Regulatory Commission 
2002). These timeframes were formulated to 
cover periods over which climatological and 
geomorphic processes could be reasonably 
predicted given current knowledge of earth 
sciences and engineering (Logsdon 2013).

Canadian practice is encapsulated 
within the APEC Mining Task Force (2018) 
document and addresses the problems of 
prescribing extreme events as hydrologic 
design criteria as well as acknowledging the 
practical limits of engineering design

Concluding Discussion
Hydrologic design criteria provided by 
regulatory agencies for mine closure 
landforms in the riverine environment in the 
Pilbara region of Western Australia are not 
clear or recommend that landforms need to 
be stable under extreme, single hydrologic 
events such as the PMP or PMF. These 
extreme hydrologic design events with annual 
exceedance probabilities in the order of 1 in 
10,000 to 1 in 10,000,000 are not appropriate 
for designing long-term mine closure 
landforms in the riverine environment of 
Western Australia 

The use of a single extreme event as a 
design criterion confuses the low annual 
exceedance probability of a design event with 
the desired design longevity of the closure 
landform (Price 2018). A post-closure 
design life of 1,000 years can be considered 
to be in perpetuity (Department of Industry 
Innovation and Science 2016). However, 
even a design life of 1,000 years significantly 
exceeds the limits of engineering practice, that 
is generally considered to be between 100 and 
200 years, and also exceeds the duration of 
most human institutions that would monitor 
and regulate closure and relinquishment 
(APEC Mining Task Force 2018).

Engineering analysis for long-term 
closure (1,000 years) needs to take into 
account the impacts of a series of design 
events that have lower magnitude but higher 
frequency. The cumulative geomorphic 
effects of multiple more frequent and lower 
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magnitude events may well exceed that of 
the single extreme event. 

Failure of a closure landform in the 
riverine environment may be dictated by 
non-fluvial factors such as settlement, 
cracking, piping or mass failure of emplaced 
fill or pit walls and as such are not explicitly 
evaluated in a hydrologic risk-based analysis. 
Even if the overall probability of failure can 
be reasonably constrained, the consequences 
of failure of a closure landform will tend to 
be location-specific, and thus, a generalised 
approach to establishing risk is unlikely to be 
particularly useful.

A more realistic approach to hydrologic 
design for long-term landform closure is 
provided by the U.S. Uranium Mill Tailings 
Radiation Control Act (UMTRCA) of 1978. 
The UMTRCA requires closure measures 
to be effective for up to 1,000 years to the 
extent reasonably achievable and in any case, 
for at least 200 years (Nuclear Regulatory 
Commission 1978, APEC Mining Task Force 
2018). However, this approach also requires 
the development of a site-specific, long-
term surveillance plan that involves annual 
inspections and maintenance, as required, 
in perpetuity. This approach would require 
a program to distribute dedicated funds to 
those groups assuming responsibility for 
ongoing maintenance.
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Abstract
This paper challenges velocity-based rock sizing methodologies traditionally applied 
for mine site infrastructure drainage management and proposes alternative shear-based 
methods. Standard velocity-based rock-sizing methodologies are considered to have 
potential to lead to overdesign of rock armour requirements, resulting in higher costs. 
The relevance of alternative rock sizing methods for a range of scales is presented in 
this paper in light of the limitations on total energy resulting from depth and velocity 
thresholds under typical design conditions. A literature review was undertaken to 
identify the sources that serve as a basis for standard rock sizing approaches. In past 
practice, shear-based methods for rock sizing have typically been dismissed due to 
requirements for iterative solutions. Recent advances in computational analyses mean 
that shear-based analyses can now be readily adopted for previously impractical 
applications. Published shear-based rock sizing approaches were reviewed for this 
study; these methods generally show a linear relationship between the critical tractive 
force and the effective diameter of the particle. In order to assess the typical distribution 
of shear stress and velocities a range of channel and culvert configurations were assessed 
by application of the USACE HEC-RAS program. Maximum velocity and shear stress 
profiles were extracted from the model results and applied in rock sizing criteria. A 
1:1 ratio between shear stress in pascals and median rock size (D50) in millimetres 
was developed based on a range of reviewed data sources and a safety factor of 2.0 was 
achieved against incipient motion through a 25% increase in diameter. Recommended 
armour rock gradations were developed using the shear-based method and compared 
to results from the standard velocity-based approach. The comparison shows that the 
shear-based method generally results in a smaller rock size than the velocity-based 
approaches, indicating that there is a fair degree of conservatism in the application of 
the velocity-based criteria for the simulated scenarios.
Keywords: Drainage, Flood Management, Erosion, Scour, Hydraulics

Introduction 
Standard velocity-based rock-sizing metho-
dologies are generally intended for the pro-
tection of bridge abutments/piers and other 
applications with relevant flow depths. Much 
of the published rock sizing guidance is based 
on assumed depth-to-stone size ratios that 
may differ from design conditions at typical 
mine-site drains and culvert inlets and outlets. 
Figure 1 presents a graphical representation 
of one example of velocity-based rock sizing 
in common use in Australia. The velocity 
thresholds are compiled from the Austroads 
Guide to Road Design (2013), which, in turn, 
is derived from the Main Roads Western 

Australia Floodway Design Guide (2006). 
This paper provides a literature review of the 
sources that serve as a basis for this Australian 
rock sizing approach and compares velocity-
based methods with alternatives that use 
shear stress.

Background Theory
Velocity vs. shear: Many published sources 
for rock sizing methodologies include both 
empirical and derived relationships between 
hydraulic conditions and the recommen-
ded gradation and sizing of armour rock. 
Empirical relationships typically include 
safety factors for design, while some derived 
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relationships predict critical thresholds for 
incipient motion. Additional considerations 
are required where characteristics deviate 
from assumed values and could reduce 
factors of safety. 

Published rock sizing methodologies can 
typically be separated into two categories: 
1. Velocity-based methods which are sim-

plified relationships that recommend an 
armour rock gradation based on velocity 
only. 

2. Force-based approach methods which 
may also include the fluid velocity in 
some form along with the addition of 
other parameters such as the depth, 
hydraulic radius, shear stress, or other 
flow characteristics to account for the 
tractive forces acting on the stones.

A commonly applied alternative to 
velocity-based rock sizing is the use of shear 
stress as the primary indicator of rock size 
requirements. In simplified form for uniform 
flow conditions, shear stress is equal to the 
product of the unit weight of water (γ), the 
hydraulic radius (R), and the unit-less energy 
gradient (S): 

τ = γ R S  (Equation 1)

Figure 2 and Table 1 illustrate an example 
of two different uniform flow conditions in 
which the velocities are identical, but the 
shear stress differs. The scenarios in Figure 2 
represent substantially different open channel 
flow conditions with identical velocities. The 
smaller channel requires a steeper energy 
gradient to represent the same velocity; this 
results in a higher shear than in the larger 
channel. The results presented are based on 
a simplified equation for uniform, normal-
depth flow; in reality, flow conditions in 
the vicinity of a bridge or culvert inlet and 
outlet can be much more complex, and the 
calculation of shear stress can be highly 
iterative. In the past, these iterative solutions 
were difficult to calculate. The U.S. National 
Cooperative Highway Research Program 
(NCHRP 2006) compiled previously applied 
rock sizing methodologies. Referring to 
computation efforts in the 1970s and 1980s, 
the NCHRP report states that shear-based 
methods are preferable to the velocity-based 
methods, but that velocity-based methods 
have generally been applied because “most 
designers prefer velocity-based methods, 
and shear is difficult to measure and little 
information regarding shear stress on riprap 
was available.” With the increasing capacity of 

Figure 1 Rock sizing data compiled from the Austroads Guide to Road Design (2013) and the MRWA 
Floodway Design Guide (2006).
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two-dimensional (2D) hydraulic modelling 
applications, previous limitations based on 
the complexity of iterative solutions may no 
longer be applicable, and shear-based rock 
sizing approaches are now viable alternatives 
to velocity-based approaches. 

Incipient motion of a particle occurs 
when the forces acting on the particle exceed 

the forces resisting motion. The critical 
conditions required to produce incipient 
motion are often represented by equations 
that make use of the Shields parameter, which 
is a unit-less number that relates the fluid 
force on a particle to the weight of the particle. 
Figure 3 shows the relationship between rock 
size and critical shear stress based on a study 

Case Discharge Side Slope Base Width Top Width Velocity Shear from R

m³/s H:V m m m/s Pa

1 300 2 10 26 4 125

2 35 2 2 9 4 180

Table 1 Comparison of velocity and shear stress for armour rock sizing.

Figure 2 Comparison of velocity and shear stress for armour rock sizing (Indicative scale for reference only).

 Figure 3 Relationship between shear stress and rock diameter (Annotated from USDA SCS 1983).
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by Shields (1936), Meyer-Peter and Mueller 
(1948), and Lane (1955). The added dashed 
line shows a 1:1 relationship between shear 
stress in pascals and an equivalent median 
rock size in millimetres, which corresponds 
to a typical Shields Number of approximately 
0.063. When safety factors are applied to linear 
dimensions such as the median diameter 
of the rock, the actual safety factor against 
motion increases in cubic relationship. A 25% 
increase in diameter, for instance, increases 
the particle weight by almost 100%, providing 
an effective safety factor of 2.0. Based on the 
studies cited above, for the purpose of this 
paper, a 1:1 ratio between shear stress and 
rock size is assumed for incipient motion, 
with a 25% increase in D50 (corresponding to 
a 100% increase in W50) applied as a safety 
factor against mobilisation.

Rock Sizing Methods – Literature 
Review
The following summarises selected rock 
sizing methodologies and the evolution of 
the original source data that served as a basis 
for the criteria currently adopted in Australia. 
The current Austroads Guide to Road 
Design Part 5 (Austroads 2013) incorporates 
velocity thresholds from several previous 
publications, including the 1994 Austroads 
Waterway Design guide (Austroads 1994). 
Some of the limitations cited in the 1994 
guidance have not been carried forward 
into the 2013 version. Specifically, the 1994 
guide cites a 1960 California Highways 
manual (CDPW 1960) as the source for 
the rock sizing methodologies. A 1.5H:1V 
batter slope and specific gravity of 2.65 
are assumed, along with bank velocities of 
two-thirds of the average channel velocity 
in straight reaches and four-thirds of the 
average channel velocity along bends. The 
recommended rock size is increased to 
convert from a numerical count of individual 
rocks to a recommended median diameter 
(D50) by total weight in the Austroads manual. 
The Austroads guidance generally appears to 
be intended for adoption in large channel 
designs; as such, the recommendations 
should be interpreted with caution when 
applied to smaller-scale applications. Main 
Roads Western Australia (MRWA) generally 

follows Austroads guidance for selecting rock 
class based on velocity, with the addition of 
several supplemental rock classes, including 
two sub-facing-class rock specifications. 

The Austroads Guide makes frequent 
reference to the United States Federal High-
way Administration (FHWA) series of 
Hydraulic Engineering Circulars (HEC) and 
Hydraulic Design Series (HDS) documents 
that relate to highway design. The documents 
with the most relevance to scour protection 
for culvert inlet and outlets are HEC 11, HEC 
15, HEC 23, HEC 26, and HDS 5. Some of the 
shear-based methods presented in HEC 15, 
HEC 23, and HEC 26 are acknowledged to be 
iterative in nature. The 1960 CABS method 
(CDPW 1960) that was originally used as a 
basis for the Austroads and MRWA velocity-
based approaches was superseded by a 1970 
edition and the 2000 CABS method (CDT 
2000). A 2006 NCHRP report re-examined 
the CABS methods along with several others 
rock sizing approaches, and recommended 
falling back on the 1994 U.S. Army Corps 
of Engineers EM 1110-2-1601 method 
(USACE 1994) for riprap sizing, essentially 
superseding the methods that serve as a basis 
for Austroads and MRWA. The 1994 U.S Army 
Corps of Engineers riprap sizing method 
(USACE 1994) traces back to equations 
presented in Stephen Maynord’s 1988 Stable 
Rip Rap Sizing for Open Channel Flows 
(Maynord 1988) and subsequent validation 
tests performed on very large physical 
models. The USACE method is presented in 
the form of an equation that shows riprap size 
being inversely proportional to the depth for 
the same velocity. 

In general, the application of the rip-rap 
equation is intended for large channels; for 
smaller channels, the Corps of Engineers’ 
Ecosystem Management and Restoration 
Research Program (EMRRP) has adopted 
shear-based stream stability thresholds that 
were compiled by the U.S. Soil Conservation 
Service in the publication Stability Thresholds 
for Stream Restoration Materials (Fischenich, 
2001). The rock sizes presented in the EMRRP 
publication tables are based on a nearly linear 
relationship between shear stress and particle 
size for particles above 10mm in diameter. 
Nearly identical values have also been adopted 
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by the U.S. Forest Service (USDA 2008), the 
U.S. Geological Survey (1986), and the U.S. 
Federal Highway Administration (2010), 
which trace their sources to U.S. canal studies 
conducted in the 1920s. Figure 3 presents 
the SI unit conversion of the tabulated values 
along with a comparison to values derived 
from the use of a typical Shields Number 
of 0.063 with a 1:1 relationship between 
critical shear stress in pascals and rock size 
in millimetres. The 1:1 relationship provides 
a slightly less conservative rock size than 
the published values. For the cases shown in 
Figure 2, application of the 1:1 relationship 
would result in a recommended median rock 
size of 200 mm for the large channel and 320 
mm for the smaller channel. Applying a 25% 
safety factor yields a recommended D50 of 250 
mm for the large channel and 400 mm for the 
small channel. A comparison to velocity-
based rock sizing according to Austroads, the 
velocities of 4.0 m/s in both channels would 
yield ¼-tonne class rock with a recommended 
median rock size of 550 mm. In this case, the 
shear-based method provides a potential 
reduction of 30% to 55% in the D50 size.

Computational Approach
An assessment of typical shear stress and 
velocity distributions along drains and at 

culvert inlets and outlets was performed 
utilising the USACE HEC-RAS software 
program for a range open channel and culvert 
configurations. Recommended rock classes 
were compiled for each channel and culvert 
size. Velocity-based criteria were applied 
using Austroads guidelines in the selection 
of a recommended D50 for armour rock. As 
a comparison to shear-based methods, a 1:1 
ratio between shear stress in pascals and 
median rock size (D50) in millimetres was 
applied based on a range of reviewed data 
sources and field tests. In order to provide 
a recommended safety factor of 2.0 against 
incipient motion, a 25% increase in diameter 
was applied to the critical value of D50. A 
uniform Manning’s roughness coefficient 
of 0.035 was applied to all channels for 
consistent comparison of results. Figure 4 
summarises the results for the configurations 
assessed using peak velocities and shear 
stresses. The velocity-based criteria result in 
a recommended rock size that exceeds the 
shear-based recommendations by a factor 
of approximately 2.6. A comparison of peak 
results to the average channel velocity and 
shear stress results is shown in Figure 5. 
Using the peak values as opposed to the 
average values results in an average increase 
of 1.5 times the recommended diameter. 

Figure 4 Comparison of channel rock sizes based on velocity criteria vs shear stress.
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Conclusions
Erosion control measures for drain 
embankments and roadway and rail culverts 
in the mining sector are typically designed 
using velocity-based criteria. In Australia, 
these criteria are published in Austroads 
and MRWA guidelines. Shear-based criteria 
have historically been avoided due to 
computational limitations. Advances in 
hardware and software allow the application 
of standardised 2D models to a range of 
channel and culvert configurations. Velocity-
based approaches generally account for the 
lateral distribution of velocities, and average 
channel velocities should be applied for 
riprap sizing under this methodology. The 
application of localised velocities may cause 
results to differ from the laboratory or field 
assessments on which the empirical methods 
are based. If shear-based criteria are applied, 
using the maximum channel shear stress is 
recommended as a conservative approach.

Using the maximum design depths 
and velocities associated with individual 
culvert sizes, calculation of maximum 
shear for application in shear-based rock 
sizing methodologies generally results in 
smaller rock size recommendations than 
the standard velocity-based (Austroads 
and MRWA) criteria. In order to assess 

the typical distribution of shear stress and 
velocities along drains and at culvert inlets 
and outlets, a range of drain and culvert sizes, 
configurations, and slopes was entered into 
the U.S. Army Corps of Engineers (USACE) 
HEC-RAS program. Average and maximum 
velocity and shear stress profiles were 
extracted from the model results and applied 
in rock sizing criteria. A 1:1 ratio between 
shear stress in pascals and median rock size 
(D50) in millimetres was assumed based on a 
range of reviewed data sources and field tests. 
In order to provide a recommended safety 
factor of 2.0 against incipient motion, a 25% 
increase in diameter was applied to the critical 
value of D50. A relationship using 1 mm of 
rock diameter for each pascal of shear stress 
was applied with a safety factor of 25% on the 
diameter (resulting in a safety factor of 2.0 by 
weight or resistance to motion). The proposed 
shear-based methodology generally results in 
a reduction of recommended rock sizes in 
comparison to velocity-based methods. For 
the range of channel sizes covered in this 
study (1-2m depth, 2-6m bottom width) the 
shear-based method resulted in a reduction 
in the median diameter of approximately 
50%. If velocity-based methods are applied 
for design, shear-based calculations can be 
presented as a comparison to demonstrate 

Figure 5 Comparison of channel rock sizes based on average vs maximum velocity and shear stress.
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the level of conservatism or additional safety 
factors inherent in the velocity-based design 
parameters. 
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