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1 Introduction

Paleoflood hydrology Kochel and Baker (1982) is the reconstruction of the magnitude and frequency of past floods using geological
evidence (Baker et al., 2002). Over the last 40 years, paleoflood hydrology has achieved recognition as a new branch of geomor-
phology and hydrology (Baker, 2008; Benito and Thorndycraft, 2005; Wilhelm et al., 2019), employing principles of geology,
biology, hydrology, and fluid dynamics to infer quantitative and qualitative aspects of unobserved or unmeasured floods on the
basis of physical evidence left in their wake (House et al., 2002). Flood indicators include various types of geologic evidence (flood
deposits and geomorphic features) and flotsam deposits, as well as physical effects on vegetation. Resulting inferences can include
timing, magnitude, and frequency of individual floods at specific sites or for specific rivers, as well as conclusions regarding the
magnitude and frequency of channel forming floods. The obvious benefit of paleoflood studies is obtaining information on floods
from periods of time or locations lacking direct measurements and observations thereby extending the systematic record especially
with regards to large floods. Paleoflood studies have been used to support flood hazard assessments as well as understanding of the
linkages between climate, land-use, flood frequency and channel morphology.

The primary goal of paleoflood hydrology is to acquire information on extreme floods by inferring their hydrological parameters
(usually flood discharge) from physical evidence, thereby contrasting with standard flood hydrology based on direct measurements
of hydrologic phenomena. Paleoflood studies involve many different techniques, the selection of which is mainly guided by (1)
attributes of the river system; and (2) the purpose of the flood study. The physical characteristics of a river system dictate the type,
longevity, and fidelity of paleoflood records. The purpose of a flood study gives priority to relevant evidence and analyses of
paleostage indicators, its age (numerical or relative), and hydraulic properties.

Paleoflood studies typically take one of two forms: (1) analyses focused on determining quantitative information for specific
events, such as the timing, peak discharge, and maximum stage of an individual flood or floods; and (2) studies investigating more
general spatial and temporal patterns of flooding, commonly to assess relations among climate, land-use, flood frequency and
magnitude, and geomorphic response (such as channel morphology or floodplain sedimentation and erosion processes). Both
types of investigations share approaches and techniques, but, in general, studies to determine the quantitative information for
specific events are most typically conducted in bedrock or otherwise confined river systems for which preservation of stratigraphic
and geomorphic records of individual floods are more likely (Kochel and Baker, 1982). In the last decade, new approaches and
paleoflood archives emerged to construct on-site and regional flood datasets derived from lake sediments (e.g., Amann et al., 2015;
Corella et al., 2016; Kämpf et al., 2019; Munoz et al., 2018; Schillereff et al., 2016; Wilhelm et al., 2012, 2016; Wirth et al., 2013),
speleothems (e.g., Denniston and Luetscher, 2017; Feinberg et al., 2019; Gonzalez-Lemos et al., 2015), and alluvial river
environments (e.g., Jones et al., 2012; Knox and Daniels, 2002; Macklin et al., 2015; Munoz et al., 2018; Schulte et al., 2015;
Toonen et al., 2015; Wang and Leigh, 2012). Recent reviews of those various flood archives andmethods involved were provided by
Benito and Díez-Herrero (2015), Wilhelm et al. (2018), Wilhelm et al. (2019), and Schulte et al. (2019).
☆Change History : March 2020. G Benito et al. updated text, added new figures, i.e., Figs. 1, 5, and 6, and Table 1. Modified Figs. 2, 3, and 4. A new author, Tessa
Harden, was also involved.
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2 Quantitative Paleoflood Hydrology
This article focuses on techniques and approaches for obtaining quantitative information on specific floods in fluvial systems—
as this has been the main emphasis of most paleoflood studies of the last 40 years—and provides example applications for different
scientific and engineering problems.
2 Quantitative paleoflood hydrology

Quantitative paleoflood hydrology relies on identification of evidence of flooding in conjunction with application of hydrody-
namic principles to determine flow magnitude. These two aspects of investigation typically lead to four components of analysis: (1)
documentation and assessment of flood evidence; (2) determination of paleoflood ages; (3) estimation of flow magnitude,
typically peak discharge associated with flood evidence; and (4) incorporation of paleoflood data into the flood frequency analysis.
The first component is geological and archival, requiring classic tools of historical research, geomorphology, stratigraphy, and
sedimentology. The second component involves geochronology in order to identify and date physical evidence of flooding. The
third component requires hydraulic and hydrodynamic analyses, typically drawn from engineering applications, to assign a flow
magnitude to paleoflood evidence. The fourth component combines paleoflood discharge data with instrumental streamflow
records into flood frequency analyses to more accurately estimate flood quantiles at low annual exceedance probabilities. These
paleoflood studies generally are more successful and have fewer uncertainties in fluvial systems with resistant boundaries, such as
bedrock or semi-alluvial channels. These relatively stable types of river systems typically better preserve stratigraphic records from
floods; some records exceed several thousand years. Additionally, the assumption of the present channel geometry being appro-
priate for estimating past hydraulic conditions is more reliable for bedrock or stable-boundary channels than it is for alluvial rivers.

Paleoflood studies in bedrock rivers gained traction in the late 1970s and early 1980s, primarily under the auspices of Prof.
Victor R. Baker and his students in the southwestern United States. Over the last 40 years, the approach has gained worldwide
application (Table. 1). Most of these paleoflood studies in bedrock rivers were carried out in semiarid and arid regions (Fig. 1).
Table 1 Quantitative paleoflood hydrology studies based on evidence from slackwater flood deposits (SWD).

World region Country State/river References

North America United States Texas Kochel et al. (1982)
Arizona Ely and Baker (1985); Ely et al. (1993); House et al. (2002); O’Connor et al. (1994);

Partridge and Baker (1987)
Utah and Colorado Greenbaum et al. (2014a); Liu et al. (2019); O’Connor et al. (1986); Webb et al.

(2002); Jarrett (1990)
Wisconsin Knox (1985)
S. California Enzel (1992)
Washington, Oregon and Idaho Chatters and Hoover (1986); Chatters and Hoover (1992); Hosman and Ely (2003);

Beebee and O’Connor (2013)
South Dakota Harden et al. (2011)

South America Peru Central Magilligan et al. (2008); Wells (1990)
Chile Atacama Miller et al. (2019)

Patagonia Benito and Thorndycraft (2020); Benito et al. (2014); Dussaillant et al. (2010)
Australia Australia Central and Eastern parts Erskine and Peacock (2002); Lam et al. (2017a); Lam et al. (2017c); Patton et al.

(1993); Sandercock and Wyrwoll (2005); Wohl (1992); Wohl et al. (1994)
Europe Spain Tagus R., Llobregat R. Guadiana R.,

Segura R., Guadalquivir R., R. Viuda
Benito et al. (2003c, 2010, 2020); Bohorquez et al. (2013); Garcia-Garcia et al.
(2013); Garrote et al. (2018); Machado et al. (2017); Ortega and Garzón (2009);
Ruiz-Villanueva et al. (2013); Ruiz-Villanueva et al. (2010); Thorndycraft et al.
(2005a)

France Ardeche R., Gardon R. Dezileau et al. (2014); Sheffer et al. (2003); Sheffer et al. (2008)
Greece Crete Macklin et al. (2010)

Middle East Israel Nahal Zin, Negev Desert Greenbaum et al. (2006); Greenbaum et al. (2000); Greenbaum et al. (2020)
South Asia India Narmada and Tapi rivers Ely et al. (1996); Kale et al. (1997); Kale et al. (2003)

Lower Ganga Goodbred and Kuehl (2000)
Kaveri river Goswami et al. (2019); Kale et al. (2010)
Mahi R.; Sabarmati R. Sridhar (2007); Sridhar et al. (2014)

Thailand Northern Thailand Kidson et al. (2006)
Northern Asia South Korea Yugu, Pyeongchang and Dong rivers Kim and Tanaka (2017); Lim et al. (2013)

China Yangtze R. Guo et al. (2016); Wang et al. (2011); Zhan et al. (2010); Zhu et al. (2005)
HanShui (Hanjiang) River Huang et al. (2013); Liu et al. (2015); Mao et al. (2016)
Yellow R. Fan et al. (2015); Hu et al. (2016); Li and Huang (2017); Liu et al. (2014); Yang et al.

(2000)
Weihe, Qishuihe, Yanhe rivers Huang et al. (2012); Wan et al. (2019); Zhang et al. (2012), Huang et al. (2011) Guo

et al. (2017)
Africa South Africa Umgeni R., Orange R., Buffels R. Benito et al. (2011a); Benito et al. (2011b); Smith (1992); Zawada (1994); Zawada

(2000)
Namibia Namib desert; Kuiseb R., Fish R. Cloete et al. (2018); Greenbaum et al. (2014b); Grodek et al. (2013); Heine (2004);

Heine and Völkel (2011)



Fig. 1 World distribution of the most representative paleoflood studies in rivers. Paleoflood data sites from PAGES Floods Working Group.
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Beyond narrow bedrock canyons and dryland regions, quantitative paleoflood hydrology has been applied on expansion-
constriction and backwater settings of Australian macrochannels (Lam et al., 2017a,b), and in expansion reaches of semiconfined
rivers of India (Kale et al., 2010; Wasson et al., 2013) and China (Huang et al., 2013; Zhang et al., 2012). More recently, studies on
the Tennessee River in the southeastern United States have shown promise for expanding the approach to more humid environ-
ments (Harden and O’Connor, 2017; Davis et al., 2019). Humid regions have typically been avoided due to the increased potential
for bioturbation from vegetation, insects, and animals as well as the potential to preserve organic material used for radiocarbon
analysis. Some aspects of these techniques have also been also applied to water flows related to megafloods and catastrophic floods
in Earth and Mars (e.g., Baker, 2020; Benito and Thorndycraft, 2020; O’Connor et al., 2013). In general, paleoflood studies show
that (1) flood discharges estimated for paleofloods have commonly exceeded those of the observed record (Enzel et al., 1993); and
(2), in certain areas, very large floods cluster on time scales of decades and centuries, interpreted as a flood response to climate
variability (Benito et al., 2015a,b; Ely et al., 1993; Harden et al., 2010, 2015; Knox, 2000).
2.1 Flood geomorphology

Paleoflood records can be reconstructed from two basic types of physical evidence: High-water marks, and paleostage indicators.
High water marks include mud, silt, seed lines and flotsam (e.g., fine organic debris, grass, woody debris) that closely mark peak
flood stage (Koenig et al., 2016). This type of evidence typically only persists for weeks, in humid climates, to several years, in
semiarid and arid climates (Williams and Costa, 1988). In contrast, paleostage indicators provide longer lasting evidence of peak
flow stages, and typically consist of fine-textured flood sediment (slack-water flood deposits; e.g., Fig. 2C), gravel and boulder bars,
silt lines, and erosion features (Herget, 2020; Kochel and Baker, 1988; Koenig et al., 2016), as well as durable botanical evidence
such as scars on riparian trees (McCord, 1996). Depending on the environment, such evidence can persist for several millennia
(Kochel and Baker, 1982).

Silt lines are subhorizontal linear deposits of silt- and clay-sized particles preserved on bedrock canyon walls, providing clear
evidence of maximum flood stage (Fig. 2A). These lines have been interpreted as derived from suspended load of the flooded
stream, being left as the flood waters covered and, in places, percolated into the bedrock valley margins (O’Connor et al., 1986).
Such silt lines are uncommon and require distinction from other processes leaving such marks on canyon walls, such as may result
from erosion of former gravel or sand patches.

High level scour marks and trimlines on valley-margin colluvium and soils may result from erosion of largest(s) floods (Fig. 2B),
although their interpretation may be ambiguous (Webb and Jarrett, 2002). In high gradient streams, coarse boulder deposits are the
most common large-flood deposits and can also serve as paleostage indicators (Jarrett, 1990).

Botanical flood evidence include flood scars and other flood-related effects on riparian trees (sprouting from tilting steams,
eccentric ring growth (Sigafoos, 1964), which have been used effectively for reconstructing regional flood magnitude and frequency
(Ballesteros-Cánovas et al., 2015a; St George, 2010). A tree-ring paleoflood study typically involves (1) identification of flood-
affected trees at the specific reach, (2) sampling by core (increment borer) or by slab of stems, branches or roots, as close as possible
to evident flood damage, (3) identification of “flood rings” (St George and Nielsen, 2003) and compilation of flood chronology,
and (4) spatial analysis of damage types and intensity during single events (spatial connectivity and Wit index; (Schneuwly-
Bollschweiler et al., 2013). Recently, Ballesteros-Cánovas et al. (2015b) described new techniques to infer flood history from



Fig. 2 Field examples of paleoflood stage indicators. (A) Silt lines preserved on canyon walls, Buckskin Gulch (Utah). (B) Flood trimline on coarse colluvium
deposits, upper Fish River catchment (Namibia) (Cloete et al., 2018). (C) Sequence of 144 beds of Holocene slackwater flood deposits in the Nef valley, about 2 km
from the Baker-Nef confluence in the Chilean Patagonia (Benito and Thorndycraft, 2020). (D) Flood benches, at 17 and 10 m above the present channel bottom,
deposited in a valley expansion within the Tagus River gorge (Central Spain; Benito et al., 2003c). (E) Flood bench at a backwater flooded tributary of the Kuiseb River
(Namibia; Grodek et al., 2013). (F) Rock shelter partly filled with slackwater flood deposits flanking Rapid Creek (western South Dakota; Harden et al., 2011). SWD,
slackwater flood deposits.

4 Quantitative Paleoflood Hydrology
tree-ring anatomical changes, even in the absence of physical external evidence of flood damage (St George et al., 2002). For
example, prolonged anoxic conditions in the root system can influence the production and transport of growth hormones (e.g.,
auxin), inducing changes in wood anatomy (Wertz et al., 2013). These vessel-size anatomical changes have been used to identify
and reconstruct summer floods in rivers with mixed flood populations (e.g., summer floods, Yanosky, 1984).

The longest paleoflood records generally result from analysis of paleostage indicators consisting of stratigraphic sequences of
fine-grained flood deposits (Fig. 2C). Such deposits can accumulate for many millennia, recording large floods. Most paleoflood
studies aiming to improve flood frequency analysis rely on such deposits. Such studies require locating appropriate sites, detailed
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stratigraphic and geochronologic analysis, hydraulic studies to relate deposits to paleoflood discharges, and flood frequency
analysis incorporating the paleoflood information.

Broad assessment of potential paleoflood sites can be obtained from desktop GIS analyses of topography and geology (e.g.,
O’Connor et al., 2014). Key elements are sources of fine grained sediment sources within the catchment area and conditions
facilitating accumulation and preservation of stratigraphic records. Rivers within ideal fine sediment-producing geology (such as
granite, diorite, and sandstone) are most likely to have high suspended sediment loads during floods. Some of the most ideal
paleoflood sites are downstream of aeolian dunefields, including the paleo-aeolian sand and loess deposits of the Namib Desert
(Cloete et al., 2018; Greenbaum et al., 2014b; Grodek et al., 2013), the Chinese Loess Plateau (Yellow River, e.g., Hu et al., 2016;
Huang et al., 2013; Yang et al., 2000) and Tibetan Plateau (Yantzee River, e.g., Guo et al., 2016; Huang et al., 2013; Liu et al., 2015).

More specific site selection commonly requires field reconnaissance, typically after preliminary assessment of aerial imagery and
topographic information. The search for sites is greatly assisted by tracing evidence of large historical floods, which commonly
signal locations of evidence of prehistoric floods (e.g., Harden and O’Connor, 2017; Harden et al., 2011). The number and types of
sites chosen for detailed stratigraphic and geochronologic analysis depends foremost on site availability and access, but also on the
study objectives. For analyses striving to improve flood frequency estimates for rare, large magnitude floods using current statistical
techniques, best results typically result from an ensemble of geologic evidence, including:

(1) Multiple sites of preserved flood stratigraphy so to evaluate consistency and completeness of the record among sites.
(2) Sites of preserved flood stratigraphy at different elevations so to differentiate the relative and absolute magnitude of floods

recorded by the deposits. A flood only recorded at low-elevation deposits may be inferred to be smaller than those recorded at
high elevation sites. Low elevation sites may record more floods and/or more recent floods; whereas higher sites may host
longer records of very large floods (e.g., Benito et al., 2003a).

(3) In conjunction with (2), a distribution of sites, depositional records, and geochronology enabling identification of multiple
flood perception or censoring thresholds and associated time intervals. For current flood frequency analysis techniques, such
information frames the consideration of individual floods recorded by geologic or non-systematic historical evidence (e.g.,
Botero and Francés, 2010; England et al., 2019).

(4) In some situations, evidence of non-inundation, such as landforms or locations that can be inferred not to have been flooded for
specific periods. Such non-exceedance bounds (Cloete et al., 2018; Levish, 2002), can constrain the right-hand tail of calculated
flood frequency distributions (O’Connell et al., 2002).

Paleoflood depositional environments (Fig. 3) commonly include (1) areas of channel widening, (2) severe channel bends and
valley expansion (Fig. 2D), (3) obstacle hydraulic shadows where flow separation causes eddies, (4) back-flooded tributary mouths
and valleys (Figs. 2E), (5) alcoves and caves in bedrock walls (Fig. 2F), and (6) the tops of high alluvial or bedrock surfaces adjacent
to the channel (e.g., Benito et al., 2003b, 2020; Harden and O’Connor, 2017; Harden et al., 2011; Kochel and Baker, 1988; Kochel
et al., 1982; Li et al., 2019; Thorndycraft et al., 2005a; Zhang et al., 2013). The first three depositional environments owe to flow
separation and recirculation zones downstream from flow perturbations. The flow pattern of recirculation zones consists of a
Fig. 3 Block diagram illustrating the location of sedimentary environments related to flood deposition. Modified from Benito G, Sanchez-Moya Y, Sopena A (2003b)
Sedimentology of high-stage flood deposits of the Tagus River, Central Spain. Sedimentary Geology 157: 107–132.
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primary eddy that fills at low discharge the central and downstream parts of the recirculation zone (side expansion), but at higher
discharge one or more secondary eddies and areas of low velocity occurs upstream of the primary eddy (Rubin et al., 1990). This
flow pattern causes deposition of suspended load in these valley-side expansion zones (Fig. 3), typically forming a reattachment bar
located at the downstream end and beneath the primary eddy, and a separation bar located upstream (Schmidt, 1990). Discharge
variation causes changes in the location of the reattachment and separation points, as well as the location of erosion and potential
deposition sites. Paleoflood sedimentation is typically preserved at stagnation zones near the separation and reattachment points
(Fig. 3). The resulting flood deposits commonly contain current-produced sedimentary structures, such as climbing ripples and
cross-lamination, and a variety of textures owing to varying flow energy, direction and velocity within a recirculation cell during the
course of the flood (Fig. 4B).

Caves, deep alcoves, back-flood tributary mouths, and distal overbanks are typically less energetic depositional environments
(Fig. 2E and F). Such slackwater environments typically accumulate finer deposits, fine to very fine sand, silt and occasionally clay.
These sites commonly host the longest and most complete records. Sedimentary structures are typically parallel lamination, massive
structure and less commonly current ripples, reflecting slack flow energy conditions (Fig. 4C).

The character, completeness, and duration of the resulting stratigraphic record depends on the local depositional environment
relative to flood hydraulics and the sediment load. The most complete and durable records are in quiet “slackwater” environments
where the suspended load settles out without eroding previously emplaced deposits. Caves and alcoves, inundated, but away from
themain channel, may shelter such deposits for millennia (e.g., Baker et al., 1983; Harden et al., 2011; O’Connor et al., 1994; Benito
et al., 2020). More proximal deposits, adjacent to the channel but in flow separation zones, such as eddy bars, backflooded tributary
mouths, and in the lee of valley obstructions, are typically coarser and commonly stratigraphically complex, affected by both flood
Fig. 4 Selected flood sequences and representative facies from slackwater flood deposits, interpretation of sedimentary structures, grain size and inferred flow
velocity. (A) Photograph of sediment peel (described in the next section; 50 cm high) of slackwater flood deposits from the Guadalentín River (Spain, Benito et al.,
2010). The sequence (i) shows, at the base, coarse to medium sand with parallel lamination and three dimensional bedforms that resemble hummocky cross-
stratification. This fining upwards sequence culminates with parallel lamination and bioturbated sand that locally includes clay chips. This sedimentary sequence is
inferred to have resulted from extreme floods with high stream flow velocity (>1 m s−1) in a near-channel flow separation zone. (B) Field photograph of a flood
sequence (flood i) in a channel widening area of the Tagus River (Spain, Benito et al., 2003a). The sequence is composed at the base by coarse to medium sand with
planar cross-bedding overlain by climbing ripples and capped by silty clay with mud cracks. Note that the overlying flood sand unit contains mud rip-up clast and
mud chips eroded from the upper laminae of the flood sequence. (C) Field photograph of slackwater flood deposits within a back-flooded tributary environment
showing three flood units (Kuiseb River, Namibia, site K-400, Grodek et al., 2013). The lower sequence (flood i) contains parallel lamination deformed by fluid escape
structures or convolute bedding due to density inversion. The intermediate sequence (flood ii) is composed of fine to very-fine sand with parallel lamination produced
by aggradation on a plane bed and is capped by clayey silt. The upper sequence (flood iii) contains fine-grained sand with in-phase climbing ripples, overlain by very
fine-grained sand with parallel lamination. The lower ripple structures show lamina dipping up the tributary valley deposited during the rising flood stage of the
Kuiseb River. The upper sand with parallel lamination was deposited later during the same flood, but near the time of peak stage during flow stagnation in the
backflooded tributary.
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erosion and deposition (Benito et al., 2003c; Grodek et al., 2013; Zhang et al., 2012). Nevertheless, such sites can contain valuable
records, particularly if the more energetic deposits more accurately mark maximum flood stages (Cloete et al., 2018; Greenbaum
et al., 2020).
2.2 Stratigraphy and sedimentology

For flood chronology and frequency assessments, stratigraphic analysis emphasizes breaks and contacts separating individual flood
deposits, and sedimentary textures and structures indicative of depositional process and sediment source (Fig. 4). Individual flood
deposits within a stratigraphic profile can be identified by the following criteria (e.g., Benito et al., 2003b; Enzel et al., 1994; Kochel
and Baker, 1988):

(1) Identification of a distinct silt to clay layer at the top of a flood unit, recording the waning stage of a flood;
(2) Intervening layers of sediments deposited by non-flood processes. These commonly include colluvium, cave roof-fall, and

tributary alluvium that separate deposits of main-stem floods;
(3) Bioturbation (plant and animal activity) indicative of an exposed sedimentary surface;
(4) An erosional boundary where the surface of an older flood unit has been eroded by a later flood event;
(5) A change in the physical characteristics of the flood units, such as sediment color or particle size, that may be brought about by

factors such as differing sediment source or differing energy conditions during separate flood events. This criterion is not always
valid by itself and may need additional support by other indicators of subaerial exposure.

(6) Development of paleosols and associated pedogenic alterations to sedimentary units.

Sedimentary structures developed within individual flood units provide valuable information on the flow energy and sediment
pulses during single flood events (Benito et al., 2003b; Kochel and Baker, 1988; McKee, 1938; e.g., Fig. 4C, unit iii). Within high-
energy eddy zones, sedimentology typically consists of medium to coarse sand with high-energy parallel lamination, large-scale
planar or trough cross-bedding, ripple lamination and massive intervals (Fig. 4A and B). Within more low-energy slack-water areas,
textures are dominated by silty sand and sandy silt, with parallel lamination (Fig. 4C).

The stratigraphy at paleoflood sites may contain deposits of non-fluvial origin, such as aeolian sands or local slope deposits
(Benito et al., 2003b). In temperate and subtropical climates, soils can rapidly form on paleoflood sediments depending on the time
interval between flood events (Lam et al., 2017a). In China, paleoflood deposits are often intermixed with aeolian loess deposits
(Huang et al., 2013; Zhou et al., 2016). In the Yangtze and Yellow river catchments, particle size distribution is used to differentiate
SWDs featuring peaks of well sorted very fine sand (>63 mm), from eaolian loess made of coarse silt (16–63 mm) and fine silt
(4–16 mm), and paleosol horizons with fine silt to clay (2–16 mm) (Huang et al., 2013; Mao et al., 2016; Zhang et al., 2012).

A complementary technique for sedimentological analysis consists of preparation of sediment peels of selected portions of the
stratigraphic profile (Benito et al., 2003b; Hattingh and Zawada, 1996). Sediment peels are made by adhering sediments from a
planar exposure of slack-water sediment outcrop onto fabric, preserving a coating of sediment and their sedimentary structures
(Fig. 4A). This technique allows for a very detailed description and analysis of textural variations and sedimentary structures for
individual flood units as well as improving interpretation of hydrodynamic changes such as flow velocity during flood events
(Benito et al., 2010).
2.3 Non-exceedance bounds

Some recent paleoflood studies have focused on evidence for non-inundation bounds. A non-exceedance bound is defined as a time
interval during which a paleostage has not been exceeded sufficiently to modify a terrace or abandoned floodplain surface
(non-exceedance discharge threshold, (Levish, 2002)). Stable terraces have been used as the field expression of upper limits of
flooding over a time interval established by geochronological means (England et al., 2010; Godaire and Bauer, 2013). But caution is
needed in inferring the absence of floods from the absence of evidence. Although non-exceedance bounds are statistically powerful,
application can be uncertain, particularly when applied to geologic and geomorphic situations because of the variety of mechanisms
by which large floods may fail to leave a recognizable depositional or erosional trace on a landform. Non-exceedance bounds, if
appropriately applied in a flood frequency analysis, can provide powerful constraints on the flood frequency distribution of extreme
floods (see section 2.7).
2.4 Paleoflood records from Alluvial Rivers

Flood histories can also be derived from unconfined alluvial rivers. Unlike bedrock rivers with stable and confined boundaries, the
dynamic nature of alluvial rivers can present challenges regarding deposit preservation and estimating discharges associated with
paleoflood records. The common approaches include employing botanical evidence, especially tree-based chronologies of floods
(e.g., Ballesteros-Cánovas et al., 2015b; St George, 2010), and, for longer records, investigation of alluvial stratigraphy preserved
within floodplain deposits, particularly vertical and lateral accretionary units on floodplain surfaces, and within abandoned
channels and oxbow lakes (Macklin et al., 2012; Toonen et al., 2012, 2020; Wang and Leigh, 2012). Some alluvial floodplain
environments are excellent flood sediment sinks (Lewin et al., 2017) but differentiation and reconstruction of flood records can be
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difficult due to low or varying depositional rates or channel migration. Detailed stratigraphic analysis of field exposures or from
sediment cores allows for identification of individual flood deposits based on similar criteria for distinguishing flood layers in
bedrock-canyon slackwater deposits (Knox, 1985). But investigators working on floodplain deposits, where contacts are commonly
obscured by bioturbations and pedogenic processes, commonly use additional tools and measurements, such as magnetic
susceptibility, geochemical or mineralogical composition, and grain-size changes to differentiate deposits (Knox and Daniels,
2002). Such techniques have gained traction in recent years during which a wide range of methods for geochemical and textural
analysis from core samples have been used to identify individual flood events, and to infer changes on magnitude and frequency,
commonly supported by robust age-depth models (e.g., Jones et al., 2012; Toonen et al., 2015).

For example, in the River Severn (United Kingdom), the relative flood magnitude of a c. 3750 year flood record was determined
from changes in the inorganic element ratio of zirconium and rubidium (Zr/Rb), as a geochemical grain-size proxy correlated to
flood discharge magnitudes at nearby gaging stations (Jones et al., 2012). Another recent example is the analysis of paleoflood
records from abandoned channel fills and oxbow lakes in distal parts of the floodplain in delta environments of the river Rhine in
the Dutch-German delta region (Toonen et al., 2012). Subaqueous environments in the floodplain (oxbow lakes and dike breach
scour holes), often contain continuous records of clastic deposits separated by organic-rich layers. In certain alluvial environments,
grain size variations within flood deposits may indicate flood magnitude (e.g., Toonen et al., 2020).
2.5 Paleoflood age determination

Dating of sedimentary flood units and intervening deposits is a key task supporting analysis of temporal flood behavior and
recurrence. Dating methods applied in paleoflood hydrology can be divided into three categories (Jacobson et al., 2016): numerical,
relative, and hybrid-correlated. Development of a time-scale sequence of paleofloods requires in most cases a combination of
methods relying on multiple numerical ages of flood-sediment layers and intervening deposits such as colluvium and soils at each
paleoflood site. In some cases dendrochronology can precisely date botanical flood damage to the year or even season, and can
provide limiting ages on flood deposits (Ballesteros-Cánovas et al., 2015a; St George and Nielsen, 2003). Numerical dating fix ages
to chronologies mainly established by deposit stratigraphy and site-to-site correlations based on deposit characteristics and
sequences.

For sedimentary sequences, numerical dating methods aim to establish the timing of individual floods. Radiocarbon dating is
the most common numerical dating tool employed in paleohydrologic work (Benito et al., 2010; Harden et al., 2015; Yu et al.,
2003), although OSL dating is being increasingly applied (Grodek et al., 2013; Guo et al., 2016; Medialdea et al., 2014). Organic
materials such as wood, charcoal, seeds, and leaf fragments are entrained by floods and commonly deposited in conjunction with
clastic sediment in slackwater sequences. Additionally, flood deposits may cover vegetation or organic cultural materials, as well as
in turn be covered by vegetation and organic detritus. All these types of materials can be radiocarbon dated, thereby providing
information on the age of enclosing or bounding flood deposits. Organic materials most likely to provide high fidelity constraints
on flood ages are those not likely to have persisted for a long period of time before deposition, such as seeds, fine organic detritus,
and twigs. Commonly, however, radiocarbon dating is performed on charcoal contained within flood deposits, which can persist
for hundreds of years prior to incorporation within a flood deposit (Blong and Gillespie, 1978). For example, a paleoflood study in
southern France by Dezileau et al. (2014) found that 80% radiocarbon dated charcoals yield older ages than the ones expected on
the basis of other applied techniques (Cs-137 and Pb-210). In that study, radiocarbon dates on annually produced seeds and twigs
provided the best results.

For most studies, it is assumed that radiocarbon ages from detrital material within flood deposits closely approximates the flood
date, although the most conservative assumption is that the radiometric date provides a maximum limiting age for the enclosing
deposit. This is particularly the case for radiocarbon dates from detrital charcoal. Dating of in situ organic materials, such as charcoal
from ground fires between affected surfaces bracketed by flood deposits, or pedogenic carbon between flood deposits, can provide
robust constraints on the timing of flood sequences. As for most geologic investigations, dating of multiple organic materials and
multiple deposits within a stratigraphic profile can increase the confidence of flood age determinations. The 5730 year half-life of
14C limits radiocarbon dating to deposits less than 40,000 years. Also, radiocarbon dating suffers from significant imprecision for
the period AD 1650 to AD 1950 because of the significant fossil fuel burning and introduction of variable amounts of 14C into the
atmosphere during the industrial revolution. Post-bomb (between 1945 and 1963) radiocarbon dating is becoming more relevant
in paleoflood hydrology for age validation of known floods to related paleostage evidence (Baker et al., 1985; Ely et al., 1992). The
atmospheric diffusion of radiocarbon after nuclear testing produced a distinctive 14C spike which provides age control for younger
deposits (Wild et al., 1997). Annually produced organic matter, such as twigs, seeds and leaves, yield the most accurate radiocarbon
dates, some within 1 year of the known age of the deposit (Ely et al., 1992). However, in arid and semiarid environments, this post-
bomb dating is limited due to low decomposition rates of organic debris and persistence of fine organic detritus in the environment.

OSL (Aitken, 1998) is a dating technique which indicates the time elapsed since burial of deposits, principally quartz and
feldspar minerals. This approach allows determination of when sediment was last exposed to light (“bleached”). For the purposes of
dating sequences of flood deposits, the general assumption is that the sediment was last exposed to light immediately prior to
deposition. Sampling and analysis involves several steps of collection and analysis of fine sand-sized sediment from a target deposit
without inadvertent exposure to light (Porat, 2006). Recent analytical methods have improved the application OSL dating for
alluvial deposits (Murray and Wintle, 2000; Wintle and Murray, 2006), resulting in age uncertainties within 5–10%, even for young
deposits (<300 years) (Duller, 2004; Medialdea et al., 2014). Recent research also has highlighted the importance of selecting



Quantitative Paleoflood Hydrology 9
suitable sample locations (Rodnight et al., 2006). The technique can be hampered in situations in which (1) the proper species of
quartz are not present in the deposits, and (2) for floods where the transported sediment was not bleached by exposure to light,
either because of high turbidity levels during the flood or because the flood occurred at night (Medialdea et al., 2014; Smedley and
Skirrow, 2020). Developments in OSL instrumentation are reducing the sample size to individual quartz and feldspar grains
(Bøtter-Jensen et al., 2000; Duller and Murray, 2000). Under appropriate conditions, OSL dating is an important tool, especially for
deposits (1) containing little or no organic materials, (2) older than the range of radiocarbon dating (>40,000 years), or (3)
younger than 300 years when radiocarbon dating is imprecise.

Dendrochronology has supported several paleoflood studies due to the well understood responses of tree growth to damage of
the bark and wood-forming tissues, buds, and leaves, and to radial growth following partial up-rooting of the trunk (Ballesteros-
Cánovas et al., 2015b; McCord, 1996; St George et al., 2002; Therrell and Bialecki, 2015). For situations when flood damage or
effects can be related to tree-ring chronologies derived from the affected tree or from established regional chronologies, flood ages
can commonly be determined to the specific year, and in some instances a specific season (Jacoby et al., 2008; Sigafoos, 1964).
Dendrogeomorphology, a science that uses dendrochronology to study geomorphic changes, is an effective tool to reconstruct flood
chronologies in ungaged mountain streams (Bodoque et al., 2015; Ruiz-Villanueva et al., 2013), which can be combined with forest
management data, historical archives, long daily precipitation records and sedimentary evidence to reconstruct flash flood activity at
a regional scale (Ballesteros-Cánovas et al., 2015a).

Lichenometry can provide numerical dates for flood bars and erosion of alluvial surfaces by floods, particularly over the last
500 years (Innes, 1985). The method allows dating the exposure age of a rock surface (e.g., boulders in a flood bar) based on the
relationship between the diameters of the largest lichens with the growth rate of the lichen species (Beschel, 1973). The first
application of lichenometry to flood studies was carried out by Gregory (1976) to define and date flood boundaries using lichens
present on bedrock and river banks. Subsequent applications to date flood events and phases of recent fluvial activity have been
carried out by Harvey et al. (1984), Macklin et al. (1992) Gob et al. (2008), Macklin and Rumsby (2007) and (Foulds et al., 2014).
The most common lichen used is genus Rhizocarpon, particularly Rhizocarpon geographicum, as well as the genus Xanthoria. Such
dating requires determination of lichenometric growth curves for the specific location and lichen species. These are typically derived
from lichen measurements on rock surfaces of known age, commonly tombstones and old monuments (Gob et al., 2003). The
convex-upward shape of most associated growth curves is consistent with phases of fast growth of smaller lichens followed by linear
growth for larger lichens (Solomina et al., 1994). Most lichenometry studies rely on the assumption that the largest lichens were the
first to colonize the rock surface, and typically only a few of the largest lichens are used to establish a growth curve. This assumption
can sometimes produce misleading results (Calkin and Ellis, 1984). Lichenometry has not been widely used for paleoflood studies
likely because it is limited to boulder bars in mountain streams (Table 1) where other techniques, such as dendrochronology, can be
readily applied (Bodoque et al., 2015). Most of the flood events dated by lichenometry were limited to the last 250 years (Foulds
and Macklin, 2016). These young ages may indicate a censuring effect due to mortality of the first lichens to colonize the flood
boulders (Rosenwinkel et al., 2015).

Radiocarbon and OSL dating can be supplemented with analysis of modern radionuclides such as Cesium-137 and Lead-210
(Dezileau et al., 2014; Ely et al., 1992; Stokes andWalling, 2003; Thorndycraft et al., 2005b). Both of these isotopes were introduced
into the atmosphere during nuclear bomb testing in the 1950s. Their presence in flood deposits signifies a post-1950 age and offers
a less expensive technique to distinguish modern flood deposits from older ones.

The largest floods usually greatly affect landscapes, commonly leaving a multiple cultural, physical, and botanical records.
In particular, assessment of the geomorphic effects of historical floods may help in optimizing the dating strategy and minimize
analysis costs. The establishment and growth of riparian vegetation along river corridors is controlled by hydrogeomorphic
processes, including flood magnitude and duration, flow velocity and sediment transport fluxes (Osterkarmp and Hupp, 1984).
Resulting botanical conditions provide a context for linking flood sediments and geomorphic surfaces with flood timing and
magnitude. Archaeological features can be used as an indicator of flood age as well. Along rivers, caves, rock shelters, and flood
benches are commonly sites of recurrent human occupation. At such sites, archaeological features may be used to infer floods and
date flood episodes. Likewise, more recent human artifacts, such as beer cans (House and Baker, 2001), pottery (Benito et al., 2003a;
Huang et al., 2012) can provide numeric age constraints on flood deposits.
2.6 Paleoflood discharge determination

Relating paleoflood evidence to flood discharge is a critical component of most quantitative paleohydrologic studies. The approach
for estimating discharge can range from application of simple hydraulic or sediment transport formulae applied to single cross
sections to sophisticated two- or even three-dimensional modeling, depending on study objectives, site conditions, and available
information and resources. Two primary approaches lead to quantitative estimates of peak discharges from paleoflood deposits: (1)
flow estimates derived from paleo-competence evaluated relative to coarse bedload transported by the flood; and (2) flow estimates
from hydraulic analysis based on the elevation of deposits relative to local channel geometry.

2.6.1 Paleocompetence
Paleocompetence techniques rely on selective sorting of particles being transported by floods, usually coarse clastic deposits, and are
appropriate for estimating the magnitude of singular events (see Jacobson et al., 2016). They have been used commonly for
exceptional floods from Pleistocene glacial, volcanic- and landslide-dammed-lake outburst floods (Manville, 2010; Manville et al.,
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2007; O’Connor, 1993; Waythomas and Jarrett, 1994), as well as from flash floods frommeteorological events (Costa, 1984). Flow
competence evaluation is based on selective-entrainment relationships (empirical and physically based equations), usually based
on the largest clasts (Carling, 1983; Costa, 1983) providingmean-flow stress, velocity and discharges per unit flow width. Reviews of
flow competence methods, including their application and uncertainties, are provided by Maizels (1983); Williams (1983);
Williams (1984), Komar (1989), Komar and Carling (1991), Wilcock (1992), O’Connor (1993), Jacobson et al. (2016) and
Komar (1996). A recent adaptation of this approach derives from the investigation of Lamb and Fonstad (2010) of a modern
canyon-eroding flood in Texas, where they retrodicted flood hydraulics from competence criteria. Their approach has been applied
by Sweeney and Roering (2017).

While competence approaches can be used over a broad range of fluvial environments, they typically can only provide imprecise
estimates of paleohydraulic values because of the uncertainties in the relations between flow strength variables (generally velocity,
shear stress or stream power) and transported clast size. Moreover, discharge can only be estimated for situations in which there is
independent knowledge of cross section geometry to apply retrodicted flow-strength variables. Other deficiencies and constraints of
the competence approach include difficulties in adequately sampling or characterizing the largest particles, ensuring that measured
clasts were indeed transported by water flow (as opposed to debris flow or mass movement), and ensuring that available sources of
transported clasts include the entire range that the flow was competent to transport.

2.6.2 Hydraulic analysis
Hydraulic analysis is the basis for discharge estimates for most quantitative paleoflood studies, especially where flood histories are
reconstructed from stratigraphic sequences of fine-grained flood deposits. In most analyses, discharge estimates follow from the
assumption that the position of paleostage evidence relates closely to the maximum stage attained by an identified flood. This
assumption is difficult to verify (Jarrett and England, 2002) and several investigators have reported height differences between flood
indicators and actual flood water depth for modern floods (House et al., 2002; Springer and Kite, 1997). In a systematic analysis of
flood indicators left by modern floods in North American mountain rivers, Jarrett and England (2002) concluded that flood
sediment elevations matched maximum flood stages, especially for deposits left at channel margins. Uncertainties in the fidelity of
paleoflood stage evidence to actual maximum stages can be assessed in conjunction with most discharge estimation procedures.

A number of approaches are available to estimate flood discharge from known water surface elevations (Lang et al., 2004;
O’Connor and Webb, 1988; Webb and Jarrett, 2002), ranging from simple hydraulic equations to one or multi-dimensional
hydraulic modeling. Most paleoflood studies assume one-dimensional flow with calculations based on (1) uniform flow equations
(e.g., Manning equation), (2) critical flow conditions (King, 1954), (3) one-dimensional gradually-varied flow models, and (4)
two-dimensional, depth averaged hydrodynamic models. As described by Webb and Jarrett (2002), the appropriate approach for a
particular site ultimately depends on project objectives and local hydraulic conditions. The use of two-dimensional models is
becoming more common, particular for complex reaches (Bohorquez, 2016; Bohorquez et al., 2013; Turzewski et al., 2019).

For all types of hydraulic calculations, the formulae and models are applied to estimated channel geometry and roughness
conditions for the time of the flow of interest. For late Holocene floods in bedrock bound fluvial systems, the present valley
geometry is commonly assumed to adequately represent the channel conditions at the time of flooding (e.g., Benito et al., 2003a;
Ely and Baker, 1985; Greenbaum et al., 2000, 2014a; Harden et al., 2011; O’Connor et al., 1986; Sheffer et al., 2008; Thorndycraft
et al., 2005a; Webb et al., 1988). But because channel geometry is the single most important factor in calculating discharge for a
specific stage, assessment of this assumption is important for overall uncertainty analysis. Hydraulic analysis of paleofloods in river
channels for which flow-boundary geometry is uncertain, requires specific consideration of plausible ranges of channel geometry at
the time of flooding (e.g., Larsen and Lamb, 2016). This is the case of alluvial rivers or bedrock bound systems where there has
possibly been incision, widening, or alluviation since the flood paleostage evidence was emplaced.

The Mannings equation is applied for uniform flow conditions of straight channels with minimal gradient and regular width
(Chow, 1959). In mountain streams with slopes ranging from 0.002 to 0.052 m m−1, Jarrett (1984) developed an equation that uses
energy gradient (S) and hydraulic radius (R) to predict an n value of n ¼ 0.32 R0.38S−0.16. The Mannings equation may be
re-formulated for estimating velocity and discharge in high-gradient natural channels (Jarrett, 1985). This equation has been
applied successfully for discharge estimates based on heights of tree scars and gravel bars (Jarrett, 1985; Rico et al., 2001).

Another special flow condition is that of critical flow (King, 1954), which arises when flow is constricted or subject to substantial
slope increase and passes through a state of minimum specific energy [v/(g∙dc)

1/2 ¼ 1]; where v is flow velocity, g is gravitational
acceleration (g ¼ 9.8 m/s2), dc is critical depth] as it funnels through or drops over the channel contraction or slope break. If such
conditions can be identified and associated with paleostage evidence, they can provide robust discharge estimates (Bodoque et al.,
2011; Webb and Jarrett, 2002). The overriding factor in controlling flow in such stable bedrock conditions is channel geometry.
A common situation in bedrock fluvial systems is flood sediment accumulation upstream of constrictions, where flow is controlled
by the constriction, promoting upstream hydraulic ponding and deposition of the suspended sediment and bedload. In these
situations, the maximum stage evidence can be related to discharge by assuming critical flow in the channel contraction, and
assuming that the elevations of the flood deposits in the controlled reach upstream indicate the total mechanical energy of the flow
(e.g., Benito et al., 1998; O’Connor et al., 2001). Critical flow conditions are especially common in steep mountain streams, with
alternating pool and steep reaches that result in longitudinal accelerations and decelerations through the critical threshold
(Bodoque et al., 2011; Grant, 1997). The critical flow method requires the field selection of channel reaches fulfilling the conditions
of critical flow (Chow, 1959), but does not depend on the variables such as roughness or slope (Jarrett, 1987; O’Connor and
Costa, 1993).
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The most common paleoflood analysis situation is that of gradually-varied flow (O’Connor and Webb, 1988; Webb and Jarrett,
2002). River channels are typically irregular in shape and surface roughness, leading to non-uniform flow conditions. In low
gradient and larger river systems, critical flow conditions may not be achieved in the absence of significant valley constrictions. The
simplest gradually-varied flow analyses assume a steady state (constant discharge) for which flow depth varies with distance but not
with time (Chow, 1959). For such situations, calculation of water-surface profiles are based on solution of the conservation of mass
and energy equations in their one-dimensional forms. The step-backwater method (Chow, 1959) for gradually-varied water-surface
profile computation is the typical approach used to relate paleoflood evidence to discharge (O’Connor and Webb, 1988). Available
public-domain computer routines, such as the US Army Corps of Engineers HEC-RAS (Hydrologic Engineering Center, 2010)
software, allows for rapid calculation of water-surface profiles for specified discharges, and energy loss coefficients. From these
calculations, water-surface elevations are computed by trial and error at specific cross-sections for a given discharge. Multiple
analyses can provide synthetic stage-discharge ratings at sites of interest, thus providing a basis for estimating paleoflood discharge
from the elevation of a deposit or other high-water evidence. Uncertainties in flow modeling parameters can be evaluated for their
resulting influence in paleoflood discharges by testing outcomes of plausible ranges of Mannings n values and possible changes in
channel geometry.

Recent paleoflood studies have overcome some specific problems of traditional one dimensional hydraulic models, such as
neglecting lateral flow and the flow exchange between the channel and overbank area (Bates and De Roo, 2000) through
application of two-dimensional hydrodynamic models (Denlinger et al., 2002). Advances in modeling approaches, computational
software, and high-resolution topographic data acquisition now make such models more practical for applied paleoflood studies.
Several such two-dimensional models including SRH2Dmodel (Lai, 2008, 2010) have been used extensively for paleoflood studies
by the US Bureau of Reclamation (see Bauer and Klinger, 2010). These models typically take advantage if high resolution digital
elevation models, such as those derived from terrestrial or airborne laser altimetry, to produce better estimates of flow stage and
velocity associated with large flows, particularly in environments of substantial secondary and cross-valley flow currents
(Bohorquez et al., 2019; Denlinger et al., 2002). Several open source hydraulic models have been used on paleoflood studies,
such as GeoClaw (Turzewski et al., 2019) from the software package Clawpack (Mandli et al., 2016), and Iber (Ballesteros-Cánovas
et al., 2016) that simulates unsteady surface flows using a finite volumemethod with a second-order roe scheme (Bladé et al., 2014).
As these hydraulic models and their interfaces advance, coupled with greater availability of high-resolution topography, application
of multi-dimensional models to paleoflood studies will become increasingly common.
2.7 Flood frequency analysis

A common objective of paleoflood studies is to provide better estimates of the flood frequency associated to extreme events. Such
paleoflood data informed flood frequency analyses can support (1) risk assessments for critical structures such as nuclear facilities,
dams, or bridges for which knowledge of infrequent large-magnitude floods is important (Benito et al., 2006; England et al., 2006;
Godaire and Bauer, 2013; Levish et al., 1996; O’Connor et al., 1994, 2014) (2) understanding of the recurrence of geomorphically
effective flows (Greenbaum et al., 2020; O’Connor et al., 1986), and (3) assessment of non-stationarity in the frequency of large
floods due to climate, land-use, or other changes (Benito et al., 2015b; Ely et al., 1993; Harden et al., 2015; Redmond et al., 2002).

Paleoflood analyses have gained credibility in the engineering community because of advances in statistical techniques for
taking advantage of non-standard observations of flood magnitude and timing. Non-standard data are those not typically part of
gaged or systematic records, including isolated historical observations, interval data (estimates of flood peaks within specified
ranges of magnitude and time), paleoflood records, and inferences and observations of discharges that have and not have occurred
over specific time intervals (sometimes called paleohydrologic or non-exceedance bounds). Flood frequency analysis approaches
evolved from using maximum-likelihood estimators in conjunction with historical and paleoflood data (Cohn et al., 1997;
Stedinger and Baker, 1987; Stedinger and Cohn, 1986). Since their origins, the likelihood functions of Stedinger and Cohn
(1986) have been incorporated in a Bayesian approach explicitly accounting for paleohydrologic bounds as well as measurement
uncertainties (O’Connell et al., 2002). This approach is the basis of FLDFRQ3, a Bureau of Reclamation flood-frequency analysis
program that has been used in Bureau of Reclamation dam safety assessments (Swain et al., 2004), and it was also implemented in
the software AFINS (Botero and Francés, 2006) that allows using non-systematic information with upper bounded statistical
models (Botero and Francés, 2010; Frances and Botero, 2012).

An alternative to maximum-likelihood estimators for incorporating non-standard data in a flood-frequency analysis is the
Expected Moments Algorithm (EMA) (Cohn et al., 1997). This approach is nearly as efficient as maximum-likelihood estimation
but more widely applicable, including any distribution type amenable to method-of-moments parameter estimation (Cohn et al.,
1997). Additionally, EMA is mathematically tractable enabling determination of variance of the estimator (Cohn et al., 2001), thus
giving accurate confidence intervals on quantile estimates. The EMA is now implemented in the USGS flood frequency software
program, PeakFQ (Flynn et al., 2006; Veilleux et al., 2014) and the US Army Corps of Engineers Software HEC-SSP (Bartles et al.,
2016). These programs support flood frequency analyses incorporating paleo- and historical data, an approach now embodied
Bulletin 17C (England et al., 2019), the recommended guidelines for flood frequency analysis by federal agencies in the United
States.

These new statistical approaches rely on incorporating information on paleohydrologic bounds or “perception thresholds” into
the analysis, thereby efficiently accounting for censored geologic or historical information (Fig. 5). Perception thresholds are stages
that reflect the range of flows that would have been recorded had they occurred for any given year over a specified time span



Fig. 5 Hypothetical setting illustrating concept of non-exceedance bounds and perception thresholds, which allow efficient incorporation of paleoflood and
historical information into statistical assessment of flood frequency. The non-exceedance bound associated with the volcanic tephra relies on the assumption that
the tephra would be removed by erosion if inundated by flooding, thus the lowest elevation of the tephra indicates the maximum possible flood stage since tephra
deposition. Perception thresholds 1 and 2 relate to the elevations of the two slackwater deposit sites. The applicable periods of each threshold is the period for which
the site is expected to record all floods, which commonly is defined by the oldest preserved stratigraphy at that level (although in some cases, geologic evidence at
the site, or from other sites, may indicate longer or shorter periods of applicability). Perception threshold three pertains to flood marks emplaced on a bridge, some
prior to establishment of the gaging station. Perception threshold 4 is “0,” assuming that the gage records all peak flows. Thus framed, the limits of flood
magnitudes (with varying ranges of precision) can in inferred in relation to the bounds for every single year back to the inception of perception threshold 1. The
validity of all perception thresholds for flood frequency analysis critically relies on the assumption that all floods exceeding the threshold are recorded.
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(England et al., 2019). For example, a high cave in the side of a river valley will only accumulate deposits from large floods high
enough to inundate the cave and leave a deposit. In this instance, the perception threshold is the discharge (or stage) associated with
inundation, assuming that each inundation results in an individual deposit. Every year, then, the river of interest can be
characterized as having a peak discharge either exceeding, or not exceeding, that perception threshold. Such perception thresholds
commonly vary with time. For example, the cave might represent a perception threshold for recording extreme floods going back
thousands of years, but the last several decades might be accounted for with a lower perception threshold consisting of flood marks
on a bridge, assuming that each time flow stage reached the bridge, a mark was made. The end member condition is a typical gaging
station, for which the perception threshold is commonly zero, because the peak flow is recorded, and thus precisely known, every
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year. Most critical for flood frequency analysis is knowledge of how many floods exceeded a specific perception threshold and the
duration of the threshold, not the precise date of each flood. For example, the date of bridge construction could define the beginning
of a perception threshold. In a sequence of flood deposits, the duration of the perception threshold migh be based on geochro-
nological evidence for that the site was accumulating flood sediment, commonly based on the age of the oldest deposits. Perception
thresholds can have upper bounds, indicating discharges so great that they would not be recorded.

Related but distinct are “non-exceedance bounds,” which define intervals for specific discharges that have not been exceeded
(Levish, 2002). Such bounds are commonly defined on the basis of stable surfaces with no indicators of recent inundation or
delicate landscape features unlikely to survive inundation, such as a fine-grained tephra preserved on an outcrop flanking a channel
(Fig. 5). The most rigorous non-exceedance assessments account for overtopping depths required for initiating erosion or
deposition of the stable terrace surface by considering the shear-stress or stream-power exerted by a range of flows, or by comparing
with effects of historical floods (England et al., 2006). Although the lack of flood evidence is not always unequivocal evidence of the
absence of flooding, identifying such bounds can greatly constrain the upper limit of discharge for low (<0.01) AEP floods (Botero
and Francés, 2010; England et al., 2010; Godaire and Bauer, 2012). Fully understanding the occurrence and magnitude of such low
probability floods is important for flood protection and design of sensitive infrastructures such as dams, nuclear power plants, or
tailing dams from radioactive mining (Godaire and Bauer, 2012; Levish et al., 1996).

Analyses incorporating non-standard paleoflood and historical flood information improve flood-frequency estimates because
they incorporate more and different types of information, typically encompassing much longer time periods than gaged records.
Additionally, paleoflood records preferentially provide information on the largest floods, precisely the information necessary to
constrain the right-hand tail of the frequency distribution, no matter what frequency distribution is selected. This benefit can be
quantified in terms of the equivalent information gain with respect to a record of annual peak flows (Fig. 6). For example, a typical
paleoflood record of 1000 years (which is common) containing evidence of only a single flood, provides the equivalent gain of
170–200 years of annual peak flows in estimating the flood discharge associated with the annual exceedance probabilities ranging
between 0.01 and 10−6. This represents a gain of 0.17–0.2 “gage station years” for each year of length for the paleoflood record.
A 1000-year record containing evidence of 10 floods (which also is common) provides the equivalent of 500 years of annual flow
peaks in estimating the 0.01 flood quantile. Considering the rarity and expense of long-duration annual records, paleoflood studies
can be a highly efficient means of improving flood frequency estimates, particularly of rare flows.
Fig. 6 Gain in flood-frequency information from a paleoflood stratigraphic record of 1000 years, as measured in equivalent years of annual peak flow records
(such as would be determined from a gauging station). The gain, in terms of station years or record length, is shown for specific flood quantiles ranging from 0.01 to
10−6 annual exceedance probability and as a function of the number of events recorded by stratigraphy. The shaded box bounds the common range of scenarios in
which 1000-year stratigraphic records contain information on 1–10 paleofloods, resulting in gains of 150–550 years of equivalent gage record. For example, a
stratigraphic record documenting two floods in the last thousand years would be equivalent lengthening the gaged record by nearly 300 years for estimating the
0.001 annual exceedance probability (1000-year) flood. Analysis by Timothy Cohn, from O’Connor JE, Atwater BF, Cohn TA et al. (2014) Assessing Inundation
Hazards to Nuclear Powerplant Sites Using Geologically Extended Histories of Riverine Floods, Tsunamis, and Storm Surges. Scientific Investigations Report
2014–5207. U.S. Geological Survey.
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Use of these paleoflood approaches, however, requires understanding the uncertainties and sensitivities. Results are sensitive to
the values of the measured peaks and the assigned values of the perception thresholds and non-exceedance bounds. Consequently,
defining and characterizing perception thresholds and bounds have been emphasized increasingly in recent paleoflood studies (e.g.,
Harden et al., 2011). Additional statistical issues and uncertainties related to the use of paleoflood information in flood frequency
analysis, such as non-stationarity, are discussed in O’Connor et al. (2014). Paleoflood record stationarity from censored samples
(systematic and/or non-systematic) can be checked using a Poisson test (Lang et al., 1999). This test assumes that the flood series can
be described by a homogenous Poisson process. The 95% tolerance interval of the accumulative number of floods above a
threshold, or censored, level is computed. Stationary flood series are those remaining within the 95% tolerance interval (e.g.,
Thorndycraft et al., 2005a; Fig. 7B). Non-stationary models may be implemented with non-systematic paleoflood data, once the
driving covariate (e.g., hydro-climatic index) on parameter change is established (Machado et al., 2015).
3 A paleoflood case study: The Llobregat River

A paleoflood analysis on the Llobregat River at Monistrol de Montserrat (�50 km northwest of Barcelona, NE Spain) provides a
good example of the analyses required to use paleoflood discharge estimates to flood hazard assessment. This summary is derived
from the complete report of Thorndycraft et al. (2005a).

The Llobregat River has a typically Mediterranean climate with extreme seasonal variations. Flood peaks are sometimes 100
times greater than the mean annual discharge of 21 m3 s−1. In the studied reach (2.5 km in length) the channel drains 3370 km2 and
is confined to a bedrock canyon with vertical walls as the river trends south through Eocene conglomerates. Slackwater flood
sediments have been deposited and preserved in six valley side rock alcoves developed within the predominantly horizontal rock
strata. Stratigraphic and sedimentological analyses of the deposits were carried out both in the field and the laboratory, supported
by 80 cm � 50 cm sediment peels of the stratigraphic profiles (Thorndycraft et al., 2005a). Flood chronology was determined by
radiocarbon and Cesium-137 dating (Thorndycraft et al., 2005b).

The slackwater flood deposits of the Llobregat River are composed predominantly of very fine to fine-grained sand with parallel
laminations alternating with climbing ripples in drift and climbing ripples in phase. In total, 46 individual flood units were
identified in six stratigraphic profiles. The number of flood units preserved at the different sites reflects relationships between flood
magnitude and frequency, with greater numbers of modern flood events located in the lower elevation alcoves (relative to the
channel bottom) such as Alcove E. The highest elevation site, Alcove C (Fig. 7A), contains a single flood unit with a radiocarbon date
of cal. AD 1516–1642. This date and the exceptional altitude (16 m above the river bed), when cross-referenced with the
documentary flood record from the Llobregat River, imply that this unit was most likely deposited by the 1617 flood
(Thorndycraft et al., 2005a), the largest flood of the last seven centuries according to historical flood observations. The next oldest
dated sediments are from Alcove F (Fig. 7A), with the basal flood unit (F1) dated to 185 � 55 BP (cal. AD 1790 � 92). This date is in
a range of poor radiocarbon dating resolution (Trumbore, 2000); it is likely, however, that the deposit dates to the 19th century. The
best dating control for the recent slackwater sequences was provided by 137Cs analysis, as the most recent sediments could be
assigned only as modern, based on the radiocarbon results alone. Alcove E contains the most modern flood units, with 10 units
post-dating the mid-1950s, as signaled by the presence of anthropogenic 137Cs. The stratigraphy and geochronology of slightly
higher Alcoves D, G and H indicates that only two or three post mid-50s floods reached these levels.

Discharges associated with the flood units at each site were estimated by computing water surface profiles for hypothetical series
of specified discharges run using the HEC-RAS one-dimensional model. The initial water surface elevation was set at a constricted
section 2.5 km (Cairat Gap) downstream of the studied reach, for which critical flow was assumed. These calculated water-surface
profiles were compared to the elevations of the flood deposits along the Monistrol study reach (Fig. 7A). For this reach, the
calculated water-surface profile for a discharge of 6200 m3 s−1 matches the highest slackwater deposits of the C1 unit (Fig. 7A).
A more conservative estimate of the discharge associated with this deposit elevation results from consideration of the calculated
energy surfaces (stage plus velocity head), recognizing that some deposits will be emplaced at higher elevations than the cross-
sectional average water-surface stage because of the two-dimensional nature of flood flows. In this case, a discharge of 4680 m3 s−1

results in an energy surface matching the deposit elevation and was considered to provide amore accurate estimate of the emplacing
discharge (Thorndycraft et al., 2005a). The ranges of estimated discharges required for floodwaters to reach either the base or the
roof of the alcoves are indicated in Fig. 7A. There are a number of alcoves (D, F and G) along the study reaches that require
discharges in excess of 2000 m3 s−1 to overtop the flood sediments. Only two alcoves (E and H) were inundated by the June 2000
flood event, having ameasured peak discharge of 1200 m3 s−1, where maximum stage was marked by silt lines on the gorge wall and
fissures in the rock filled with debris (Fig. 7A). The slackwater flood deposits and associated paleodischarge estimates provide strong
evidence of ancient floods with discharges greater than those recorded in the gage station�3 km upstream for which measurements
extend back to 1913.

The paleoflood records from this reach were combined with the nearby gaged record to estimate flood frequency. For this
analysis the information considered included the annual flood peaks from the 1913–2000 gaged record, the 12 paleofloods since
AD 1790 (radiocarbon dated at site F1), which also gives the lower bounds or perception levels, and an upper bound premised on
the inference (from historical accounts) that the flood discharge estimated for the 1617 flood has not been subsequently exceeded.
Timing and discharges of paleoflood and gaged records are represented in Fig. 7C (modified from Botero, 2006). The shaded area
indicates the time and discharge domain of the perception levels, here specified to increase as the flood deposits accumulated—only



Fig. 7 Llobregat paleoflood case study based on data after Thorndycraft et al. (2005a). (A) Calculated water surface and energy line elevations (in green) for
selected discharges related to the elevations of mapped slackwater flood deposits at alcoves C-H alongdthe Monistrol study reach. Also shown is the elevation of
debris and silt lines left above Alcove H by the June 2000 flood. This modern flood data was used to calibrate the hydraulic model at this reach. (B) Poisson test on
the time flood sequence in the Llobregat record for the period 1790–2003, for floods exceeding a discharge threshold of 980 m3 s−1. The dotted line shows equal
exceedance probability over the period 1780–2000. Note that the flood series (red line connecting points) remain within the 95% tolerance interval (enveloped
curves), i.e., annual exceedance probability of the 13 paleoflood events is stationary for this flood magnitude. (C) Organization of historical systematic and paleoflood
data for the Llobregat River at Monistrol with respect to inferred perception levels and non-exceedance bounds in support of flood frequency analysis (modified from
Botero BA (2006) Estimación de Crecidas de alto periodo de retorno mediante funciones de distribución con límite superior e información no sistemática.
Polytechnical University of Valencia: Valencia, pp. 223). (D) Two component extreme-value distribution fitted with (1) systematic data and (2) systematic and
paleoflood data. Discharge values in cubic meters per second are shown for return intervals of 500 years and 100 years based on the two frequency analyses.
Discharge values from the distribution fitted with paleoflood data are more than twice those based only on the systematic flood series. Moreover, the 500-year
discharge value of 5200 m3 s−1 is on the same order of magnitude of a discharge of 4680–6200 m3 s−1 estimated for the AD 1617 flood, despite this event not
being included in the flood frequency analysis. HWM, high water mark; Q, discharge.
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floods overtopping a sequence of flood deposits can leave a record (Fig. 7C). Seven floods with minimum discharges of
860–2200 m3 s−1 were deposited in Alcove F prior to the gage record. In the 20th century, four floods exceeded 1600 m3 s−1

(1913, 1919, 1971 and 1982) and at least two reached 2500 m3 s−1 (likely 1913 and 1971 floods). Tentative ages were assigned to
the paleoflood units (and corresponding censoring thresholds) based on documentary records of known floods (Fig. 7C). Lang’s
stationarity test was passed for the Llobregat combined flood record covering the period 1790–2003 with a lower threshold
discharge of 980 m3 s−1 (Fig. 7B).

Multiple probability distributions functions were fit to the reconstructed flood data series with statistical parameters estimated
by the maximum likelihoodmethod (Stedinger and Cohn, 1986). The distribution function with the best fit to the data was the Two
Component Extreme Value distribution (Fig. 7D). The incorporation of the paleoflood data into the frequency analysis increases the
flood quantile estimates for the Llobregat River substantially—by a factor of two for annual exceedance probabilities less than 0.05
(Fig. 7D). The largest paleoflood discharge (Alcove C, likely of 1617 flood) is associated with a return period of�500 years, whereas
one of the two largest floods of the 20th century (1971) represents a return period of c. 50-year flood (Fig. 7D). The fitted
distribution based on paleoflood and systematic data shows a characteristic dog-leg shape commonly associated with flood
populations derived from of a mixture of two or more flood generation processes (Alila and Mtiraoui, 2002). Differences between
the populations may be the result of a number of factors, including seasonal variations in the flood-producing mechanisms (such as
autumn floods instead of winter-spring floods) and changes in weather patterns resulting from low-frequency climate shifts.

This paleoflood analysis illustrates the common situation of the gaging station data not being fully representative of the low
probability floods (300–500-year return period) affecting a river reach. Here, the hydrological series is too short to make informed
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decisions regarding flood risk for infrequent floods and that paleoflood data provide valuable and quantitative information for
flood hazard mapping as requested in the European Flood Directive.
4 Concluding remarks and perspectives

This article has reviewed techniques and approaches for obtaining quantitative information on specific past floods from the
geologic record, describing strengths and limitations of various analysis methods. Paleoflood hydrology has gained recognition
among hydrologists, statasticians, and engineers as a valuable tool to extend flood series data back beyond the gage record and
thereby provide better estimates of the frequency and magnitude of rare floods. The extension of the flood record of rare floods to
centuries and even millennia is widely applicable for scientific and engineering problems, including (1) flood hazard assessments
based on flood frequency analyses (Benito et al., 2010; Harden et al., 2011), and (2) determination of maximum flood discharge
over a specific period of time (Cloete et al., 2018; Enzel et al., 1993) for hydrologic risk analysis of critical facilities (such as dams
and wastewater facilities and power plants; Bauer and Klinger, 2010; Godaire and Bauer, 2013; Greenbaum et al., 2014a; Levish
et al., 1996; Machado et al., 2017). Considering ongoing discussions as to how climate change may affect flood occurrence at
regional and local scales, paleoflood hydrology can provide a perspective by showing how flood magnitude and frequency has
responded to past climate shifts over millennia time scales (Benito et al., 2015a,b; Ely et al., 1993; Harden et al., 2015; Knox, 2000),
and to different specific modes of atmospheric and oceanic circulation patterns (Ballesteros-Cánovas et al., 2019; Benito et al.,
2015a,b; Ely et al., 1993). Additionally, floods in dryland environments have been recognized as a fundamental water resource for
human systems and ecosystems (Grodek et al., 2020), opening new paleoflood research directions assessing long-term water
infiltration into alluvial aquifers (Benito et al., 2011a,b; Greenbaum et al., 2002; Grodek et al., 2013). Advances in paleoflood
science are expected to benefit from improvements in geochronological methods and better and more readily available topographic
information, which support higher resolution flow modeling.

More analysis tools are now being applied to paleoflood research, thus expanding the settings providing flood records. Lakes,
alluvial floodplains, and delta settings, commonly analyzed with geophysical and geochemical core measurement techniques, are
providing flood records (Corella et al., 2016; Jones et al., 2012; Toonen, 2015; Wilhelm et al., 2016). New techniques exploring tree
physiological response to floods are also opening new ground to flood reconstructions (Ballesteros-Cánovas et al., 2010; St George
et al., 2002; Wertz et al., 2013). Multidisciplinary studies combining marine and lake records with more conventional slackwater
flood deposit records can provide further insight into flood frequency and magnitude in relation to climate and environmental
changes at basin scales. Other areas ripe for investigation include better understanding of relations between sedimentary sequences
and local hydraulics that can lead to a better estimation of the water depth and flow energy required to reproduce the sedimentary
structures, methods to relate suspended sediment concentration with flood unit thickness, and techniques for obtaining informa-
tion about flood hydrograph characteristics from deposit characteristics.
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