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A B S T R A C T

Traditional methods for the calculation of rating curves from measurements of water level and discharge are
criticised as being limited and complicated to implement, such that manual methods are still often used. Two
methods for automatic computation are developed using least-squares approximation, one based on polynomials
and the other on piecewise-continuous splines. Computational problems are investigated and procedures re-
commended to overcome them. Both methods are found to work well and once the parameters for a gauging
station have been determined, rating data can be processed automatically. For some streams, ephemeral changes
of resistance may be important, evidenced by scattered or loopy data. For such cases, the approximation methods
can be used to generate a rating envelope as well, allowing the routine calculation also of maximum and
minimum expected flows. Criticism is made of current shift curve practices. Finally, the approximation methods
allow the specification of weights for the data points, enabling the filtering of data, especially decreasing the
importance of points with age and allowing the computation of a rating curve for any time in the past or present.

1. Introduction

A rating curve is a relationship between the discharge Q of a stream
and h, the stage or surface elevation, so that when routine measure-
ments of stage at a gauging station are made, the flow can be estimated.
The curve is calculated from a number of h Q( , ) rating data points from
that station, using relatively infrequent measurements of the velocity
distribution, cross-section, and stage of the stream.

The problem of the automatic calculation of rating curves has re-
ceived relatively little research attention. The main problem seems to
be the perceived success and almost universal use of the power function

= −Q C h h( ) ,μ
0 (1)

where C h, 0 and μ are constants, and which is a straight line on
−Q h h(log , log( ))0 axes. The reasons for it being a problem include:

• On one hand it is too simple, with only three parameters, and is
limited in its accuracy and generality.

• On the other hand, it is too complicated, such that the three para-
meters occur nonlinearly and solving for them is difficult such that
manual methods are often used.

The power function, and its representation as a straight line on
logarithmic axes appears ubiquitously in books, standards, and lecture
notes. Whereas it is sometimes a convenient approximation to the

relationship Q h( ) over the whole range of data, in general it is not. It is
an over-simplification of the real hydraulics at many gauging stations.
Such a formula is valid for an infinitely-wide weir in infinitely-deep
water or for uniform flow in an infinitely-wide rectangular channel.
There is no reason for a real rating curve to follow such a function
closely. Insufficient knowledge of hydraulics has led to a too-great be-
lief in the power function, on one hand by practitioners, and on the
other by theoreticians in related disciplines. This has led to complicated
procedures in some organisations where sequences of power functions
are used, and a great deal of trouble goes into the laborious manual
fitting of piecewise-continuous straight lines on logarithmic axes by
adjusting the offsets h0 for each on different vertical −h hlog( )0 axes.

The more general representation of Q by a polynomial of higher
degree M has been in the background for some time:

∑= + + + …+ =
=

Q a a h a h a h a h ,M
M

m

M

m
m

0 1 2
2

0 (2)

where …a a a, , , M0 1 are coefficients. It was presented by Herschy in the
first edition of his book in 1985, most recently in Herschy (2009, p195),
in International Standard 7066-2 (1988), and in Morgenschweis (2010,
p384). Standard linear least-squares methods can be used to determine
the coefficients. Mirza (2003) used it successfully with just =M 3, and
in that scholarly work gave considerable attention to statistical matters.

Reading those sources and water industry websites, but also reading
between the lines, it seems that the approximation by polynomials,
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despite its promise, has not often been adopted, and usually only im-
plemented to low degree. Herschy wrote in the first edition of his book
in 1985, and 24 years later again in the third edition, (Herschy, 2009,
p195): “however some user experience is still required with this method
before it is accepted as an alternative to the existing methods”, implying
that its use has been languishing.

Fenton and Keller (2001, Section 6.3.2), suggested writing the
polynomial for Q raised to the power ν, specified a priori:

∑= + + + …+ =
=

Q a a h a h a h a h ,ν
M

M

m

M

m
m

0 1 2
2

0 (3)

which is actually a simple generalisation of the power function, Eq. (1),
written in the form = +Q a a h( ) ν

0 1
1/ , to = + + + …Q a a h a h( ) ν

0 1 2
2 1/ .

They recommended a value of =ν 1
2 , on the basis of that being the

mean value in the hydraulic discharge formulae for a sequence of weir
and channel cross-sections that modelled local and channel control
(Fenton, 2001). The use of such a fractional value of ν has two effects:

1. For small flows, h and Q small, the data usually is such that

= +Q a a h,ν
0 1 (4)

with =ν 1
2 , is a surprisingly good approximation when compared

with power function approximations in which ν is a free parameter,
as shown in Fenton (2015b, Section 3.4). In this small flow limit the
more general polynomial approximation just has to simulate nearly-
linear variation, which it can easily do.

2. For larger flows, when the higher degree terms in Eq. (3) become
important, the use of Qν means that the magnitude of the dependent
variable to be approximated is numerically much smaller, so that,
instead of a range of say, ≈Q 1 to −10 m s4 3 1, for =ν 1

2 a numerical
range ≈Q 11/2 to 102 has to be approximated. This is a simple
version of a power transformation used in more formal data analysis
applications to stabilise variance and to make the data more normal
distribution-like.

In recent years there have been a number of papers with a quite
different way of looking at the problem, using Bayesian statistics. Le
Coz et al. (2014) provided an excellent survey both of that field and the
rating curve problem generally. However, all the papers they referred to
used either a single power function or two or more of them, each in the
belief that they were following hydraulic principles. It is the assertion
here that there is little fundamental about the power function or the
application of hydraulic theory, and here a rather different path will be
followed, treating the problem as one of data approximation.

In that spirit, Coxon et al. (2015) used LOWESS (LOcally WeightEd
Scatterplot Smoothing) to obtain rating curves for a huge number of
sites. The method considered each stage-discharge measurement as the
central point in a subset of the data points. The estimate of the dis-
charge for the data point and its variance was generated by fitting a
weighted linear regression to the selected data. Weights were depen-
dent upon the differences in stage and gave most weight to data closest
to the central measurement. To account for outlier points, two passes
were made, then a weight function was used to weight each data point
according to how far the point was from the first fitted line, reducing
the impact of those furthest from it. The procedure could be used to
satisfy the goal in this work, of developing methods for practical au-
tomatic computation. It seems good in principle, but there are a number
of adjustable parameters and the reduction of importance of outlying
points might deny the importance of some causative processes and
trends at work. It functioned well for the demanding application that
Coxon et al. required of it, where the main thrust was the quantification
of uncertainty rather than the generation of approximations.

Fenton (2015b), hereafter referred to as Report I, considered several
aspects of the problem of the automatic generation of rating curves. The
present paper is based on that report, which contains more detail. Here

first, the application of polynomial approximation methods is treated at
length. Several mathematical reasons for problems associated with
them are given, with physical explanations and methods for over-
coming them. It is considered imperative to use series of Chebyshev
polynomials rather than the simple polynomials shown above which are
series of monomials hm. Also it is desirable to approximate, not values
of discharge Q, but Qν, where ν is a fractional exponent, as in Eq. (3). It
is usually able to be taken to be 1

2
, but in extreme cases can be calcu-

lated by a method that is presented. Other than ν, the degree M of the
polynomial series is the only free parameter. It is possible to use large
values of M but if the data has gaps there will usually be one degree
beyond which large fluctuations occur in between accurate approx-
imation of the data points. To overcome that problem, an alternative
approximation method is developed using piecewise-continuous
splines, in which case the parameters of the problem are the number
and stage values of knot points between which simple quadratic or
cubic spline functions are used. A simple automatic method is suggested
for the placing of those knots, just requiring there to be the same
number of data points in each interval. This usually works well.
Otherwise, in difficult cases the values of stage for the knot points can
be specified. Results for both the polynomial method and the approx-
imating spline method are presented. They are both found to perform
well and have the potential to be standard procedures for rating curve
generation. Then possible reasons for scatter of rating points are dis-
cussed. For such data, the methods can be modified to calculate ad-
ditionally a rating envelope, giving likely maximum and minimum flow
rating curves. For discrepant points it is suggested that current use of
shift curves should be re-examined. Finally, the approximation methods
are simply modified to allow the importance of data points to decrease
with age. This allows the generation of a rating curve on any date in the
past also, thereby determining any relatively slow long term changes in
the stream.

2. Polynomial approximation

Eq. (3) is now generalised by considering the approximating func-
tion to be made up, not of a series of monomials hm, but of more general
functions f h( )m :

∑= = + + …+
=

Q a f h a f h a f h a f h( ) ( ) ( ) ( ).ν

m

M

m m M M
0

0 0 1 1
(5)

In application, the functions are specified a priori, and the unknown
coefficients am found by least-squares fitting to data points h Q( , )n n

ν for
= …n N1, , . Each of the functions applies over the whole data range of

h, and so methods using them are global ones, as distinct from those in
Section 3 below where piecewise-continuous local functions are used.
We will consider the functions f h( )m each to be a polynomial of degree
m so that the sum of such polynomials in Eq. (5), including the last one
at =m M , is also a polynomial of degree M, and we can refer to
methods using them as polynomial approximation. It will be found that
Chebyshev polynomials for the f h( )m are particularly useful.

There are three problems here with the approximation: the rapid
variation of data at the low flow end, the large range of discharge Q,
and the ability of the approximating functions to describe arbitrary
variations. These problems will be overcome, as is now described.

2.1. Exponent ν

2.1.1. Usual adequacy of =ν 1/2
Traditionally, the power function has often been required to model

all the data. By writing it in the form of Eq. (4), = +Q a a hν
0 1 , while it

incorporates the usual rapid variation and large curvature on Q h( , )
axes at low-flows, it is obvious that it is a limited approximation to the
whole rating curve problem. Concerning the actual value of ν to use,
Report I (Fig. 2) showed that for each of seven different stations,
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selected randomly, adopting =ν 1
2 gave agreement with scattered data

at the low flow end that was just as satisfactory as results from fitting a
value of ν. McMahon and Peel (submitted for publication) used the
polynomial approximation methods of Report I and this work to obtain
622 rating curves from 171 Australian Bureau of Meteorology Hydro-
logic Reference Stations. They found that the methods worked well -
with the exception of about 0.5% of the stations, where there was dif-
ficulty approximating the low-flow data, as exemplified by the dotted
line in Fig. 1 here. In such cases it is better to determine the actual value
of ν from the low-flow data and use that, as is now described.

2.1.2. Calculating ν when necessary
To do this one can use any of several methods outlined in Report I

(Section 3.2). The recommended method is to use the function
= +Q a a hν

0 1 (Eq. 4) and solving for a a,0 1, and ν by nonlinear least-
squares approximation of the points at the low-flow end, minimising

∑= + −ε a a h Q( ) .
n

n n
ν

2 0 1
2

(6)

As two of the unknowns, a0 and a1 occur linearly in Eq. (4) and
hence in the error contribution here, this form is computationally
simpler than solving for the three unknowns in the highly nonlinear and
embedded form of Eq. (1), = −Q C h h( )μ

0 , when problems with com-
plex values can occur if the term in brackets becomes negative as part of
the iterative solution procedure.

It is not recommended to use all points to determine ν. Its value is
best determined from the low-flow data when the simple linear ap-
proximation used in Eqs. (4) and (6) is adequate in that limited range.
To determine how many of the points to use in determining ν, the
author has experimented and as a rough guide found using about one
third of all the data points usually satisfactory, but this can be varied to
suit the circumstances, determined by plotting results.

Always ν has a value rather less than unity. Its precise value is not so
important in its other useful function, that of providing a power
transformation for the larger flow data, to be explained in Section 2.1.3
below.

Fig. 1 shows the results for a case where it was necessary to cal-
culate ν, the most extreme one found. The physical nature of the purely
local control is shown in the photograph; it is a compound V-notch
weir. On the rating curve plot it can be seen that fitting a polynomial in
the form of Eq. (3) with =M 3 did not work well with =ν 1

2 . Using the
method described immediately above to determine ν from low-flow

data gave =ν 0.136, significantly different. With that value, the sub-
sequent polynomial approximation of Eq. (3) worked rather better as
shown. However the data shows a certain oscillation due to the irre-
gular nature of the structure. Better results were obtained using spline
approximation, an alternative method to be described below, which
still worked well simply with =ν 1

2 . Taking a higher degree polynomial
with =M 4 gave very poor results with large oscillations.

2.1.3. The role of ν as a power transformation
The use of a value of ν which is less than unity solves another

problem with the approximation of rating data, and that is the large
variation in the magnitude of Q. It can easily vary by a factor of 104

between lower and upper ends, even in a small problem such as shown
in Fig. 1. The polynomial has to approximate variation of that magni-
tude with a similar relative accuracy overall. One way of overcoming
this which was tried was to approximate values of Qlog and use a
polynomial for that quantity. This expanded the low flow region and
contracted the high flow region as required, but sometimes too much
so, and is not recommended. Instead, using a fractional value of ν with
Qν, which also gives a much smaller numerical range to approximate,
for example Q1/2 varying by a factor 102, has been found to be sa-
tisfactory. Whether a small calculated value such as =ν 0.136 in Fig. 1
or the commonly-assumed value =ν 1

2 in this work, it was found to
eliminate problems that otherwise occurred if =ν 1 were simply used.

2.2. Global basis functions in the approximating series

Whereas the previous two difficulties, of describing both low flows
and overall flows varying by several orders of magnitude, are ones of
accuracy, and are obvious, the worst problems associated with poly-
nomial approximation are not obvious, and are to do with the ap-
proximating properties of the functions f h( )m in Eq. (5).

We present a hierarchy of approaches in increasing levels of power
and desirability, starting from the conventional and immediately ob-
vious one. They are illustrated in Fig. 2.

(a) =f hm
m, as suggested in books and standards, shown in Eqs. (2) and

(3), and represented in Fig. 2(a): this is a very fragile form if the
numerical values of h are large, for example using elevation above
sea level, when the range of h might be something like =h 100 m to

=h 110 m, as illustrated for example, or if the stage is specified in
centimetres, as is the practice in some countries. Over that rela-
tively small range of stages, each monomial term hm looks rather
like all the others, with little apparent curvature. To describe any
general variation with finite curvature, the individual contributions
in the series would have to struggle, with large coefficients am.

(b) = −f h h( )m
m

min , where hmin, the minimum of all stages measured
has been subtracted: the effects are shown in Fig. 2(b), and now the
individual functions show more diverse behaviour. Common prac-
tice is to use a stage datum for rating curves just below the
minimum, so this is effectively what might be used in practice.
However, in Section 6.3 of Report I an example was presented that
showed using the monomial functions in the form of both (a) and
(b), with and without subtraction of hmin, individual contributions
in the series of approximating terms had remarkable values of
± 10, 000 times that of the final sum! Although plotting and use of
results was possible, it would be extremely fragile if passing coef-
ficient values between programs and computers, as they would
have to be specified to very high levels of precision.

(c) =f ym
m, where y is a scaled variable in the interval − +[ 1, 1]:

= − + −
−

y h h
h h

1 2 ,min

max min (7)

where hmax is the maximum of all the stage measurements: Fig. 2(c)
shows how the first 4 or 5 such monomials are quite different,
providing good grounds for approximation, however for larger

Fig. 1. Shannon River at Dog Pool, Australian Station 060185, 1964–1971.
Data from the Hydrologic Reference Stations Data Set, Bureau of Meteorology,
Australia.
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values of m they all start to look similar to each other, making
higher degree approximation more difficult. In Report I using y was
found to give rather better results than the first two possibilities of
(a) and (b), however not as good as the following fourth alternative.

(d) =f T y( )m m , still using y, but as the argument of a Chebyshev
polynomial of degree m, which can be simply evaluated by

=T y m y( ) cos ( arccos )m , or recursively from = =T y T y y( ) 1, ( )0 1 ,
and for all ⩾ = −− −m T y yT y T y2, ( ) 2 ( ) ( )m m m1 2 : Fig. 2(d) shows that
they all behave quite differently from each other, and hence can
describe arbitrarily varying quantities without the problems noted
above. They are simply implemented using the formulae given here.

2.3. Recommended formulation and solution for the coefficients

From the above, it is recommended to use the formulation

∑=
=

Q a T y( ).ν

m

M

m m
0 (8)

It is highly desirable to use a fractional value of ν for which a value
of 1

2
can usually be assumed. In exceptional cases ν can be determined

using the procedure described in Section 2.1.2.
In view of the evidence cited in Section 2.2(b), it is considered

imperative to use polynomials which have an orthogonal nature, cap-
able of efficient description of arbitrarily-varying data. In any further
reference to polynomial approximation in this work it is always Che-
byshev polynomials that have been used. Each Tm is a polynomial of
degree m so that the sum of the different Chebyshev polynomials to

=m M is itself a polynomial of degree M. While it can be called a
Chebyshev series, it cannot be called a Chebyshev polynomial itself.
The number of terms in the series and the degree M of the polynomial
might typically be in the range from 3 to 10.

The coefficients am can be obtained by least-squares methods,
minimising the sum of the weighted squares of the errors of the ap-
proximation over N data points,

∑ ∑= ⎛

⎝
⎜ − ⎞

⎠
⎟

= =

ε w a T y Q( ) ,
n

N

n
m

M

m m n n
ν

2
1 0

2

(9)

where the yn are obtained from the hn from Eq. (7). The wn are the
weights for each rating point, giving the freedom to weight some points
more if one wanted the rating curve to approximate them more closely,
or they could be set to be a decaying function of the age of the data
point, so that the effects of changes with time could be examined. Or, a
less-trusted data point could be given a smaller weight. Often, however,
all the wn will be 1.

Two ways of calculating the am are considered here:
(a) Normal equations Following the standard least squares proce-

dure, the total error in Eq. (9) is differentiated with respect to each of
the unknown = …a m M, 0, ,m and set to zero so that error is at a
minimum, thus giving a system of +M 1 equations in the +M 1 un-
knowns, the so-called normal equations for the am. Interpreted in a
matrix equation sense, the equations can be written =A a b[ ][ ] [ ]jm m j ,
where to evaluate the elements in those matrices here, abandoning the
usual convention that matrix row and column numbering starts at 1,

∑

∑

=

=

=

=

j M

b w Q T y

m M

A w T y T y

For from 0 to

( )

For from 0 to

( ) ( )

j
n

N

n n
ν

j n

jm
n

N

n j n m n

1

1

The equations and the matrix are famously poorly-conditioned un-
less care is taken to use functions which have some form of orthogonal
nature, as has been done here. While the Chebyshev polynomials are
orthogonal under integration and summation with certain special
weights, in the present case summing over an arbitrary sequence of yn,
they are not strictly orthogonal, but show sufficient diversity of beha-
viour that the matrix is not particularly poorly-conditioned. Here no
problems were found using this method to obtain solutions.

Fig. 2. Comparison of the ability of different basis functions f h( )m to represent varying data. Shown are three monomials on the intervals [100, 110] and [0, 10], and on
− +[ 1, 1] the first eleven monomials and Chebyshev polynomials.
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(b) Optimisation methods: These minimise ε2 in Eq. (9), using
common software such as the Solver module in spreadsheets, or other
software packages. They are simple to implement without a great deal
of knowledge of the program details. The methods used internally
might be gradient methods, such as a multi-dimensional Newton’s
method. Numerical solution does not seem to be difficult in the present
work because the am occur linearly in the approximating function (8),
and also because of the efficient nature of the approximating basis
Chebyshev polynomials.

2.4. Degree of approximation M

With polynomial approximation there are few freedoms of choice.
The use of Chebyshev polynomials is considered mandatory here, to
guard against series with very poor convergence properties. Then,
having decided to approximate in terms of a certain value of ν, probably
1
2
, the only computational parameter remaining is the degree of ap-

proximation M.
Fig. 3 shows a typical result from polynomial approximation for a

data set with gaps. As M increases to from 2 to 3 to 4 and 5, better
agreement is obtained, here coincidentally the latter two agreeing. For
higher degree =M 6, however, the polynomials have begun to oscillate
between the data points, and the results are unacceptable. For data with
no large gaps, one can use higher degrees, but sooner or later the degree
of approximation becomes too high and unacceptable oscillations ap-
pear.

In practice, one could determine the appropriate value of M for a
particular station visually, based on evidence such as the figure here. It
need only be done once.

2.5. Quantification of goodness-of-fit

It would be better to have a more automatic procedure to measure
how well a particular function approximated the data, such as the
statistical coefficient of determination, R2. The author investigated this
problem at some length, considering two error criteria. The first was the
sum of the squares of the errors at each data point, the numerical value
of ε2 defined in Eq. (9), which could be used to obtain a value of R2. This
did not work well, as it did not detect over-fitting, when a higher degree
of approximation fitted the data points better but allowed severe fluc-
tuations between them, as shown in Fig. 3.

To try to identify that problem, a second error criterion was in-
vestigated, which was the integral of the absolute magnitude of the
curvature of the approximating function over the whole curve.
Unfortunately, both error criteria behaved differently for different
stations, and no recommendation can be made here.

Criteria such as R2 also do not show where omitted-variable bias
exists. In the rating curve case there are several such variables, in-
cluding those that are discussed in this work: unsteadiness, and channel
changes, both short- and long-term.

In view of these problems, no goodness-of-fit results will be pre-
sented here, either for the polynomial representation or for the ap-
proximating spline method about to be described.

2.6. Extrapolation

The methods in this work approximate data over a finite range.
They must not be used for extrapolation beyond either end of the data.

3. Approximating splines

A different approach was developed in Report I (Section 8), using
piecewise-continuous approximation in the form of spline functions,
where, rather than interpolating as in their usual application, they were
required to perform least-squares approximation. The method is in a
sense both local and partly-global, in that a sequence of local poly-
nomials is used, each of which approximates just part of the range of
data, but which is required to merge smoothly with its two neighbours,
so that they and their approximated data points also have some influ-
ence. It seems to be relatively simple, to have a readily-understandable
physical significance and a good level of continuity. Other than the
degree of the splines (second or third, which seem to make little dif-
ference) the only adjustable quantities are the values of stage used as
knot points, marking the boundaries between successive splines.

Consider a number of data pairs h Q( , )n n
ν for = …n N1, 2, , . Let the

range of stages h h[ , ]min max be subdivided into J intervals by +J 1 knot
points, at each of which the stage is = … +H j J, 1, 1j and =H h0 min
and =H hJ max. They must be separate and ordered, such that >+H Hj j1
for all the j. The points are to be approximated over each interval by a
polynomial of degree =M 2 or 3. So, for = … −j J1, , 1 and

⩽ ⩽ +H h Hj j 1:

∑− = −
=

P h H c h H( ) ( ) ,j j
m

M

j m j
m

0
,

(10)

where −P h H( )j j is the polynomial of degree M which holds between
stage knot points Hj and +Hj 1, expressed as a function of −h Hj, the
height of stage h above the preceding knot point.

At each knot there are continuity conditions between the poly-
nomials on either side, agreeing in value and first derivative for
quadratic splines, and additionally the second derivative for cubic
splines. The Hj may be set as data or automatically allocated such that
there are the same number of data points in each interval, for example,
described below. The program calculates all the coefficients so that the
sum of the squares of the differences between data points and functions
are minimised. Only those data points falling within a certain interval
contribute to the total sum using the function for that interval. It is not
necessary to scale the h as recommended for polynomial approximation
in Section 2, as it only appears as the local shifted value −h Hj and the
degree of the polynomial is low anyway.

The details of those operations are as follows. The sum of the
squares of the errors is minimised using the polynomials as given in Eq.
(10), as

∑ ∑ ∑= ⎛

⎝
⎜ − − ⎞

⎠
⎟

= ∈ =

ε w c h H Q( ) ,
j

J

n I
n

m

M

j m n j
m

n
ν

2
1 0

,

2

j (11)

where Ij is the set of data point reference numbers in interval j; the
summations are a mathematical statement of the obvious “over all the
intervals, consider every data point in that interval and calculate its
contribution to the total error using the polynomial for that interval”.

The spline nature of the approximation requires the satisfaction
across each interior knot of the continuity of function value plus all

Fig. 3. Typical results using polynomial approximation for data with gaps,
showing variation with degree M (Station: Pallamallawa on the Gwydir River,
Australia, see p22).
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derivatives up to −M 1 at the knot points, giving extra conditions on all
the coefficients cj m, . From Eqs. (10) at left and right of each interior knot
point, and using = −+δ H Hj j j1 for the interval length, the conditions
become, for = …j J2 :

∑ ∑= =

= + =

+
=

+
=

−

+

c c δ c mc δ

c c c δ M

, , and

3 , if 3.

j
m

M

j m j
m
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The solution procedure to determine the unknown cj m, by mini-
mising ε2 in Eq. (11) is first to use the continuity Eqs. (12) to eliminate
those variables on the left sides, then to solve for the remaining cj m, , as
for polynomial approximation. Differentiation leading to the Normal
Equations could be used, but it is simpler to use optimisation software,
which was the case in this work. Because of the high degree of con-
tinuity enforced by equations (12), the net number of unknowns is not
large, just +J M . In the present work, quadratic splines, =M 2, were
found to be satisfactory, and J might have a maximum value of, say, 10.

To allocate the knot points Hj, they could simply be equally spaced
between minimum and maximum values. Another automatic method,
that which was used here, was simply programmed and which often
worked well, was where knot points were calculated such that there
were approximately the same number of data points in all intervals.
However, the knots can also simply be assigned as data. Such hand
adjustment of the knot positions was sometimes useful to describe re-
gions of high curvature. It was usually found necessary to place a knot
point near isolated data points for extreme floods. It should be em-
phasised that only the values of the stage knot points Hj were specified,
there was no attempt to pin the approximation by specifying the dis-
charge there.

The approximating spline method worked well in all the examples
considered, with occasional improvement by hand allocation of knot
points. It never failed badly, unlike the polynomial method if too high a
degree M were used as in Fig. 3.

4. Plotting of rating curves

Horizontal discharge axis In this work as described above, using
=Q Q1/2 proved very helpful for computations. However, using it as a

plotting co-ordinate caused the low flow region to be too condensed for
display purposes. Attempts were made instead to use Qlog for the
computations, but this caused the high flow region to be too condensed,
with difficulties of approximation. The hybrid solution was adopted, of
obtaining solutions using Q1/2 but for plotting the traditional horizontal
scale of Qlog has been mostly used here, with its ability to represent
variation of several orders of magnitude. The exception is the use of Q
in Fig. 3.

Vertical stage axis Use of logarithmic scales for stage has often made
representation and understanding difficult and caused errors. Report I
(Section 4.3) reported on an elementary mathematical mistake in cur-
rent software using logarithmic axes. Unless one were using the tradi-
tional power function of Eq. (1) with −h h0 there is little reason to use a
logarithmic scale for stage, as it typically varies from a value close to
zero, opening out unreasonably on the logarithmic scale, to at most
about 10 m.

Tradition is that the stage has an arbitrary local datum somewhere
below the lowest possible water level, so that stages plotted are typi-
cally in the range of greater than 0 m to something like 10 m or rather
less, but where they have no external physical significance. Use of the
transformed variable y (Eq. 7), or the spline method, mean that there is
no advantage to specifying and using these traditional local values of
stage. It would be possible to use the actual elevation above mean sea
level, which would have certain advantages, as that is often important
in water engineering. There would no longer be such a need to maintain
an arbitrary local benchmark and refer measurements to that, especially
if satellite navigation systems could be directly used for water level

measurements.

5. Results

To examine the performance of the methods described above, data
from seven sites were considered, three from Australia, two from
Bangladesh, and two from the United States of America. Wherever
necessary results were converted to SI units. Results have already been
shown for one in Fig. 1, and another in Fig. 3 using polynomial ap-
proximation only. Results for that and another five are shown in Fig. 4.
In each case two rating curves are presented, one from polynomial
approximation, the other from approximating splines. All have been
obtained using =ν 1

2 , thus approximating values of Q1/2. In all cases the
polynomial degree M shown on each figure was chosen as the smallest
value that was compatible with accuracy. Often increasing M by a
single degree beyond that led to unacceptable fluctuations, as has been
seen in Fig. 3, which is for the same station as Fig. 4(e). For the spline
method, all results are for quadratic splines, =M 2. No advantage was
found using cubic splines, =M 3. In the first four cases in Fig. 4, au-
tomatic allocation of knot points was used, with about the same number
of data points in each interval; in the two remaining examples and in
Fig. 1, especially at large flows where there were few data points, the
knot points Hj were allocated manually by specifying in a data file. The
method used is shown on each figure.

(a) Avon River at Stratford, Vic., Australia, site number 225201A,
2012-06-05 to 2015-04-24 There is a large gap in this data. The
polynomial approximation of low degree, =M 3, and the quadratic
splines with only three intervals, have worked well, both giving a
similar plausible bridging of the gap. There are actually two points
close together for the highest flows. Using higher degree poly-
nomials showed over-fitting, with the result that both points were
almost interpolated, with large oscillations between data points.
(b) Brahmaputra River, Bangladesh 1992 The data was taken from
Mirza (2003) by digitising a fairly small figure, so the accuracy here
might be questionable. Both methods handle this fairly simple
problem quite well. It might be thought that neither method has
treated the two points at ≈ ≈ −h Q19 m, 40, 000 m s3 1 well, but it
should be remembered that the approximations are for discharge,
plotted horizontally, and so they actually perform quite well in
passing between those two points and the three or four points on the
other side of the curves with roughly the same stage.
(c) Choctawhatchee River near Bellwood, AL, USA, USGS Station
02361500, 2000-12-07 to 2015-05-22 The only real problem for
approximation seems to be for the lowest flows, where there is a
quite characteristic scatter of points. Both methods seem to perform
satisfactorily.
(d) Ganges River, Bangladesh 1992 The data was also digitised from a
small figure in Mirza (2003). This is a demanding problem, if one
accepts that the fine structure (“lumps”) in the data are real. It has
been chosen here to do that as a test of the model, although it might
be over-fitting it. If one knew the reliability of the data, it might
have been possible to use a smoother approximation, with a poly-
nomial of lesser degree and/or splines with fewer intervals. Both
polynomials and splines, with high levels of approximation, have
performed well in describing the complicated variation. The poly-
nomial can do this because the data points are uniformly dis-
tributed. The splines have performed well, even if the placement of
the knots has yet again been performed automatically, and there are
actually few data points in each interval.
(e) Gwydir River at Pallamallawa, NSW, Australia, Site number
418001, 1991-01-05 to 1998-07-29 Again, this shows data with
some large gaps. Using splines, automatic allocation of equally-po-
pulated intervals did not give such good results for high flows. So,
for the first time in this figure, knots were allocated by hand, placing
one at 8 m, which caused the splines to pass very close to the high
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flow points as shown. Some of those data points were obtained
partly from a boat floating above flooded agricultural land — pos-
sibly a rougher approximation would have been more justified. In
any case with splines one has quite a lot of power to experiment
with point placement.
(f) Noxubee River near Geiger, AL, USA, USGS Station
02448500,1970s This data set shows three regions, of local, channel
and overbank control. The polynomial method has worked well
here, but with a high degree of approximation necessary to pick up
the points of high curvature, which has led to some possible over-
fitting. The spline approximations have worked well also, with only
five hand-allocated knots. This is a site where the greater freedom to
allocate spline knot points has been of benefit.

6. Scattered and looped data

The problem of the scatter of data points is now considered. Two
main causes will be identified, and two different ways of representing
the data. Firstly, short-term changes in the stream will be considered. It

is suggested that this scatter can be incorporated and quantified by the
computation of a rating envelope, so that maximum and minimum
expected flows can also be calculated and published. Secondly, long-
term stream changes can be identified and described by a procedure
that enables the calculation of a rating curve also for any date in the
past.

6.1. A model of a rating curve determined by channel resistance

A model of a stream is now developed to try to understand how
channel changes affect rating curves. This will apply to both channel
and overbank control, where the boundary resistance of the stream
determines the rating. It is assumed that in the vicinity of the gauging
station the long wave equations hold, a pair of partial differential
equations, one expressing volume conservation, the other momentum
conservation. Fenton (2015a), Sections 1.4 & 1.5 showed for waves of a
sufficiently long period, that the time derivative in the momentum
conservation equation can be neglected, obviously enough, but not so
obviously, also that fluid inertia terms can be neglected in that limit,

Fig. 4. Typical rating curves obtained from polynomial and piecewise-continuous spline approximations.
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leaving the only terms in the equation those due to resistance and
gravity, surprisingly even for high Froude number flows. Modelling the
resistance here by the Gauckler-Manning equation then gives the mo-
mentum equation in the form in which the only approximation is that
wave motions are long, typical of flood waves, and of course also valid
for steady flow:

=Q
n

A
P

S1 ,η
5/3

2/3 (13)

where n is Manning’s resistance coefficient, A is stream cross-sectional
area, P is its wetted perimeter, and = −∂ ∂S η x/η is the magnitude of the
slope of the free surface, where η is the surface elevation, which might
also be a function of time t. For the special case of a steady uniform
flow, =S Sη 0, the bed slope, and the expression becomes the usual
statement of the Gauckler-Manning equation. It is surprising that the
expression here is such a simple and general extension of that familiar
form.

We consider the different terms on the right of Eq. (13), to see how
different channel quantities affect the rating:

Resistance coefficient n: this might be able to change relatively
quickly, and its value can depend on the recent flow history, due to
the following effects:

• Small changes in bed grain arrangement and armouring can have
a finite effect and could occur quite quickly, if, for example,
overlying particles with high resistance are swept away by an
increase in flow, or start to deposit in interstices.

• Bed forms – ripples, dunes, anti-dunes etc.. If conditions are right
for the development or changing of bed forms, the effects on re-
sistance could be important. This would take longer than for bed
grain re-arrangement, as more material has to be transported. This
has been treated by Simons and Richardson (1962).

• Sediment transport – if the bed grains are moving, then the stress
required to move them appears additionally, whether they are
moving along the bed, rolling, jumping, or carried suspended in
the flow. It could be quite variable, depending on the different
thresholds of movement.

• Vegetation – grasses, reeds, trees standing in the water etc.. This
would have a more slowly varying effect, partly continuous and
possibly seasonal.
The relative change in rated discharge due to a change nΔ is ob-
tained by the differential of Eq. (13) with respect to n, giving

= −Q Q n nΔ / Δ / , which might not be small. Fenton (2015a), Sec-
tion 1.6.2 showed the wide scatter of channel resistance coeffi-
cients in a large field study and hypothesised that some of that

was due simply to different arrangements of bed particles. Fig. 6
below shows a situation where a range of variation Q in a large
alluvial river over three years was some 25%-50%. That may also
be partly due to fill and scour, however the rapidity of change in
the data suggested it was mainly due to resistance changes.

Geometric term A P/5/3 2/3 – effects of bed fill or scour: as a model
we consider the channel to be rectangular, of width B, such that

= −A B h Z( ), where Z is the bed elevation, and to be wide such that
≈P B so that the term becomes ≈ −A P B h Z/ ( )5/3 2/3 5/3. The relative

change in rated discharge due to a change ZΔ in the bed level due to
scour or fill is then = − × −Q Q Z h ZΔ / 5/3 Δ /( ), in which −h Z is the
water depth at the gauging station. It is asserted here, that that re-
lative amount of scour or fill, ZΔ /Depth, is usually small. In this
case, because finite amounts of material have to be moved to effect
the change in bed elevation, such changes to the rating will be re-
latively slow. They may be of a consistent long-term nature, leading
to gradual change in the rating curve. A method to identify and
calculate such change will be presented in Section 6.4.
Unsteady surface slope changes: The last term in Eq. (13) is the
surface slope, which for a change SΔ η gives the differential

=Q Q S SΔ / Δ /η η
1
2 . The slope might change because of long-term

downstream channel changes. However there can be rapid changes
as a flood wave passes, which could have a finite effect on the rating,
but only at times immediately before and after a flood peak when
the surface slope is sufficiently different from the mean bed slope.
Some important data are obtained during floods when there may be
unsteady effects, which it would be good to correct, and of course
subsequent routine computation of discharge should ideally be
corrected for unsteadiness around flood peaks. The problem was
considered at some length in Fenton and Keller (2001), Section 4,
which included an extra correction to the Jones method, which
obtains an estimate of Sη by assuming that the flood is propagating
as a wave without change. However, effects of changing resistance
described above are also important but unable to be quantified, so
that unsteadiness will not be considered further here.

6.2. Scattered data and results due to a moveable bed

Let us consider the mechanism by which changes in resistance cause
the data to be scattered. Fig. 5 shows rating curve axes, stage versus dis-
charge. Three dashed lines represent hypothetical rating curves for a
stream with different constant resistance values. The dotted line represents
a hypothetical flood event, showing the actual relationship between stage
and discharge at each time. We now consider such an event in detail.

The initial point A is for a low flow, over a bed with relatively small-
resistance after a period of steady flow during which the bed has been
steadily armoured and smoothed. The flood event then begins. The flow
increases quickly in time, but initially not enough to change the nature of
the bed, and the flood trajectory follows a curve corresponding to the
initial resistance. After some distance on the figure, the bed is no longer
stable, grains move, are exposed and bed forms might develop.
Accordingly, the resistance is greater and the trajectory crosses contours of
increasing resistance. There may also be unsteady effects due to the front
of the flood being steeper and the instantaneous flow being greater, which
mimic the effects of changing resistance. After the flood peak, with max-
imum discharge, and high transport, resistance continues to increase. A
little time later the stage is a maximum. Subsequently the flow continues
to decrease but the transport rate is still enough for resistance to increase.
Gradually however that stops, and the flow gradually decreases. At point
B, with relatively low flow, with the disturbed bed still in place, the re-
sistance is still high. Now gradually over time the sediment transport acts
to reduce the bed-forms and pack the bed grains so that resistance is less.
As time passes, the bed will gradually be worked back to a low-resistance
state as initially, but where the more-or-less steady flow as at point C
might be different from the initial one.

Fig. 5. Scattered data and erratic later measurements: shown are idealised
rating curves for different constant resistances and a trajectory of a possible
flood event during which resistance changes with the flow. A rating might be
taken at any point on the trajectory, as might a routine stage measurement.
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The path has followed a loop, with two discharges for each stage,
and vice versa, before and after the flow maximum. This is often de-
scribed as a looped rating curve, however it is really just a trajectory, a
path in time on rating axes that may be more or less looped. A rating
point obtained during such an event could be anywhere on it. If we
consider a long period of time, with many such flow events, the space
between the upper and lower constant-resistance curves will contain
many such flow trajectories, and many individual rating points ob-
tained at moments on those trajectories, leading to a scatter of points
between the bounds. The more stable the bed, the less the scatter.
Usually, rating measurements are not made frequently enough for any
trajectory to be identified, and the rating points seem randomly scat-
tered. By approximating all data points as described above, we obtain
what we call the rating curve.

If a new rating point were found to be discrepant from established
results, it might be possible to correct for any effects of unsteadiness as
described above, but as suggested there, effects of changing resistance
due to changing bed composition and bed forms might also be im-
portant. We do not know those conditions, and do not know how much
to correct. The conventional shift curve approach is to arbitrarily distort
the rating curve locally by a straight line on logarithmic axes to pass
through the new point (Sauer, 2002, Section 8; WMO, 2010, Section
1.12). The view here is that even a short time after the discrepant
measurement, when resistance in the stream is still the same, the flow
might be quite different, and be far from the shifted interval, so that the
shift is not relevant. The next time that the interval of the shifted curve
is visited by a flow event, conditions in the stream might be quite dif-
ferent, and the previous discrepant point and shift no longer have a
special relevance. Accordingly there is little need to ascribe great im-
portance to a discrepant data point not agreeing with the rating curve.
The view here is that it is an approximating curve passing through a
more-or-less scattered cloud of points, where at least some of that
scatter is due to fluctuations in the preceding flows and instantaneous
state of the bed when each point was determined.

Now considering the subsequent regular routine measurements of
stage to estimate flows, each measurement might be made at any point
on the continuing trajectory, but should fall within the band of re-
sistance values as modelled in the figure. This ephemeral nature of the
resistance in mobile bed streams means that it is not possible to predict
accurately the flow at any later time. It is not known what flows and
bed changes will occur in the future up until the moment a routine stage
measurement is made and the rating curve required to give a corre-
sponding flow. This existence of a certain level of uncertainty for some
rating sites suggests the concept and different treatment of the next
section, using the approximation methods developed here to calculate
curves for not just the likely mean discharge, but also for minimum and
maximum possible values.

Of course, the data for many sites shows little scatter. In the small
sample presented in this paper, of the six run-of-river results shown in
Fig. 4 about three show evidence of significant scatter. A single rating
curve might still be considered satisfactory but augmentation by max-
imum and minimum flow curves might be useful.

6.3. A generalisation for scattered data - the rating envelope, maxima and
minima

The existence of a finite band of results leads to an extension of the
idea of a single rating curve: the calculation of a rating envelope, inside
of which all or most of the individual rating points fall, and to provide
expressions for curves approximating both upper and lower bounds, as
well as the conventional rating curve approximating all points. The
effects of long-term changes would have to be subtracted, however,
possibly using time-decaying weights, as described in the following
section.

For gauging stations where data is scattered, rather than being a
problem, this can be viewed as providing extra information as to the

range of discharges that can be expected. It would make some sense also
to publish routinely the minimum and maximum flows expected for
each stage reading.

In keeping with the approach in this work, methods of data ap-
proximation can be used to calculate the upper and lower envelopes.
The method suggested here is, first to calculate the approximation to all
the points, the rating curve, and then to delete those points which lie
below it. Then to approximate the remaining points, again deleting
those points which lie below it and repeat the process of approximation
and deletion as many times as necessary, to give the upper envelope, a
fit to the uppermost points. Then this procedure would be repeated for
the lower envelope, successively deleting all points above each curve.
As approximately half the data points are lost with each pass, the
number of passes is limited. The two data points with the smallest and
largest values of independent variable h might always be retained to
ensure that the final envelope would extend from the smallest to largest
values of stage. In practice what one would be doing is approximating
the 1/8 or 1/16, say, of all data points, those which lie furthest from the
approximation to all the points. In the spirit of approximation, it can be
called an envelope, even if some points might still lie outside it.

Fig. 6 shows an example for three years of gaugings from the Red
River, Viet Nam. The flood hydrographs for those years, shown in Re-
port I (Section 11.3), were quite characteristic, with the main events
being more seasonal rather than with individual events, the flows
coming off the high mountains in southern China. The flow trajectory
has several large loops, barely identifiable in the figure here. The pro-
cedure described above for computing envelopes was applied, using
polynomial approximation with degree =M 6. Four passes of the
halving procedure for each of the upper and lower envelopes were
applied, so starting with 217 data points, at the end there were about

≈217/2 154 for each envelope. It can be seen that the method worked
well, giving mean, maximum, and minimum rating curves.

6.4. Identification of long-term changes and calculation of a rating curve for
any day in the past or present

A feature of both approximation methods, using polynomials and
piecewise-continuous splines, is that the importance of each data point can
be weighted. For example, less weight might be given to a point whose
accuracy was doubtful. Or, points can be weighted according to their age,
so that the oldest points have the smallest contributions, and the most
recent gaugings can be rationally incorporated to give the most recent
rating curve. In fact, the rating curve can be constructed for any day, now
or in the past. For that day, t0 say, one could assume that points more
recent than that would have zero weight, and those older have a weight
which is a function of their age. Thus if tn is the time when point n was
established, then in the sums of squares, Eqs. (9) & (11), the weights are

Fig. 6. Rating curve and upper and lower envelopes to the data, Station 41 on
the Red River, Viet Nam, 1995–1997.
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given by

= ⎧
⎨⎩

− ⩾w F t t t t( ), if ;
0, otherwise

,n
n n0 0

(14)

where −F t t( )n0 is a function of the age of the data −t tn0 at the date of the
rating curve to be calculated. Here, all rating points later than t0 have been
assigned a weight of zero. It might not be too outrageous, in fact, if data
were scarce, also to include later rating points in some manner, as pro-
viding some information at least. This will not be pursued here.

The simplest method of diminishing the importance of older points
would be to ignore all points with an age greater than a certain amount.
The author tried this, but for high flows, where there were not enough
points to define the curve properly, poor results were obtained. A better
method seems to be to use a smoother function, decaying into the past,
to keep all the points to some extent in determining the shape of the
curve. A good example is the exponential weight factor

− = − −F t t α t t( ) exp( ( ))n n0 0 , where α is a decay constant. Writing τ1/2 for
the “half-life”, the age at which the weight decays by a factor of 1

2
, then

the expression can be written
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t t τ

0

( )/n0 1/2

(15)

This was applied to 31 years of data from USGS Station 02448500
on the Noxubee River near Geiger, AL, USA, with results shown in
Fig. 7. The polynomial method with a degree =M 3 was used, with a
Q1/2 fit and with a “half-life” of =τ 2 years1/2 , found to work well. The
results show how the rating curve, and presumably the bed, has gen-
erally moved steadily down over 31 years.

7. Conclusions

It has been asserted that the problem of rating curve generation
benefits little from simple hydraulic formulae, and is essentially one of
data approximation, for which least-squares methods can be used. They
too have their problems if used without knowledge and overcoming of
intrinsic computational difficulties. Two methods have been developed
and applied. Both use a power transformation of discharges. One uses
polynomial approximation, in which it is necessary to scale the stage
and then to use a polynomial which is a series of Chebyshev poly-
nomials. These have much better numerical properties than simple
polynomials and are easily implemented. The only important parameter
is the degree of polynomial, however monitoring of results for different
degrees is necessary, as there is usually one degree beyond which the
results show unacceptable oscillations. The other method developed
here uses piecewise-continuous splines together with least-squares

approximation. This requires possibly just the input of the number of
computational knot points. Depending on the results, some specifica-
tion and manipulation of knot point stage values might be necessary.
The spline approach is more robust and flexible, but is slightly more
complicated to program. As the natures of the polynomial and spline
approximations are different, but programming details of the solution
methods are similar, the use of both would be convenient and would
provide a test and check on results.

The nature of scattered rating data at some stations has been dis-
cussed, and it has been shown that the scatter of data points in mobile
bed streams might be predominantly due to changes in resistance in the
stream. Those changes can be ephemeral, depending on the arrange-
ment of bed grains or of bed forms, so that we never really know what
the immediate resistance and hence the rating is. A method has been
developed to compute upper and lower bounds to the rating data,
giving an envelope to scattered data, so that, for routine stage mea-
surements, not only the most likely mean discharge, but also the pos-
sible maximum and minimum values could be published.

It is suggested that if a discrepant rating point is determined, there is
no point in locally distorting the rating curve by using a shift curve, as
the next time that the interval of validity of the shift is visited by a flow
event, conditions in the stream might be quite different.

Both approximation methods developed here allow the specification
of a weight for each data point which can be specified as diminishing
with age of the data, such that the methods can be used to generate the
present rating curve or that on any particular day in the past.

An incidental practical benefit of the approaches here is the possi-
bility of no longer using an arbitrary local datum for rating data and
curves, instead using the actual elevation above mean sea level, thereby
merging more with other hydraulic applications that might use the
results.
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