Derivation of Ishbash Formula for stone size on sloping apron

Shield's formula

Critical tractive shear for horizontal bed

$$
\tau_{c}=K_{s}\left(\gamma_{s}-\gamma_{w}\right) d
$$

Critical tractive shear for sloping side reduces by a fraction K_{i}

$$
\tau_{\theta c}=K_{i} K_{s}\left(\gamma_{s}-\gamma_{w}\right) d
$$

Where,

$$
K_{i}=\frac{\tau_{\theta c}}{\tau_{c}}=\sqrt{1-\frac{\sin ^{2} \theta}{\sin ^{2} \phi}}
$$

Shear stress exerted by flowing water

$$
\tau_{o}=\gamma_{w} R S_{f}
$$

for wide rivers, $R \simeq y, \quad S_{f}=\frac{n^{2} v^{2}}{y^{\frac{4}{3}}}$
Substituting $\tau_{o}=\gamma_{w} y \frac{n^{2} v^{2}}{y^{\frac{4}{3}}}=\gamma_{w} \frac{n^{2} v^{2}}{y^{\frac{1}{3}}}$

For incipient motion,
$\tau_{\theta c}=\tau_{o} \longrightarrow \gamma_{w} \frac{n^{2} v^{2}}{y^{\frac{1}{3}}}=K_{i} K_{s}\left(\gamma_{s}-\gamma_{w}\right) d \longrightarrow v^{2}=K_{i} K_{s}\left(\frac{\gamma_{s}}{\gamma_{w}}-1\right) \frac{d y^{\frac{1}{3}}}{n^{2}}$
$v=\sqrt{K_{i} K_{s}}\left(\frac{\gamma_{s}}{\gamma_{w}}-1\right)^{\frac{1}{2}}\left(\frac{d^{\frac{1}{2}} y^{\frac{1}{6}}}{n}\right)$
As per Strickler's formula, $n=K_{n} d^{\frac{1}{6}} ;$ where $K_{n}=\frac{\left(\frac{y}{d}\right)^{\frac{1}{6}}}{21.9 \log \left(12.2 \frac{y}{d}\right)}$
$v=\sqrt{K_{i} K_{s}}\left(\frac{\gamma_{s}}{\gamma_{w}}-1\right)^{\frac{1}{2}}\left(\frac{d^{\frac{1}{2}} y^{\frac{1}{6}}}{K_{n} d^{\frac{1}{6}}}\right) \longrightarrow \quad v=\sqrt{K_{i} K_{s}}\left(\frac{\gamma_{s}}{\gamma_{w}}-1\right)^{\frac{1}{2}}\left(\frac{d^{\frac{1}{2}}}{K_{n}}\left(\frac{y}{d}\right)^{\frac{1}{6}}\right)$
$v=\left(\frac{\sqrt{K_{i} K_{S}}}{K_{n}}\left(\frac{y}{d}\right)^{\frac{1}{6}}\left(\frac{\gamma_{s}}{\gamma_{w}}-1\right)^{\frac{1}{2}}\right) d^{\frac{1}{2}} \longrightarrow v=K_{d s} d^{\frac{1}{2}}$
Where, $K_{d s}=\frac{\sqrt{K_{i} K_{S}}}{K_{n}}\left(\frac{y}{d}\right)^{\frac{1}{6}}\left(\frac{\gamma_{s}}{\gamma_{w}}-1\right)^{\frac{1}{2}}=\frac{\sqrt{K_{i} K_{S}}}{K_{n}}\left(\frac{y}{d}\right)^{\frac{1}{6}}\left(\frac{\gamma_{s}}{\gamma_{w}}-1\right)^{\frac{1}{2}}$
$d=\frac{v^{2}}{K_{d s}^{2}}$

Weight of stone W (Ishbash formula)

$$
W=1000 \frac{\pi}{6} S_{s} d^{3}=1000 \frac{\pi}{6} S_{s}\left(\frac{v^{2}}{K_{d s}^{2}}\right)^{3}
$$

$$
\begin{aligned}
& W=1000 \frac{\pi}{6} S_{s} \frac{v^{6}}{\frac{\left(K_{i} K_{s}\right)^{3} y}{K_{n}^{6} d}\left(S_{s}-1\right)^{3}} \longrightarrow \quad W=\left(\frac{1000 \pi}{6 \frac{K_{3}^{3} y}{K_{n}^{6} d}}\right) \frac{S_{s} v^{6}}{K_{i}^{3}\left(S_{s}-1\right)^{3}} \\
& W=\left(\frac{1000\left(\frac{22}{7}\right)}{6 \frac{(0.05945)^{3}}{(0.0461)^{6}} 1.03}\right) \frac{S_{s} v^{6}}{K_{i}^{3}\left(S_{s}-1\right)^{3}} \longrightarrow W=(0.02323) \frac{S_{s} v^{6}}{K_{i}^{3}\left(S_{s}-1\right)^{3}}
\end{aligned}
$$

